基于车辆跟踪的两种算法研究
[Abstract]:Vehicle tracking is widely used in military and transportation systems. The key of vehicle tracking is to track the vehicle accurately and in real time. Under the influence of partial occlusion, sudden change of vehicle trajectory and light change, the tracking accuracy can be guaranteed. This paper mainly discusses vehicle tracking based on license plate recognition and vehicle tracking with partial occlusion. When tracking the vehicle, the license plate is unique and can quickly determine the identity of the vehicle. If the license plate of the tracked vehicle is blocked, the method of tracking the vehicle license plate is invalid. The feature point matching method is used to track the target vehicle. In order to meet the need of real-time tracking, an improved ORB (Oriented FAST and Rotated BRIEF) algorithm is proposed to track the target vehicles. The experimental results show that the target vehicles can be tracked in real time and accurately when there is partial occlusion. Vehicle tracking based on license plate recognition first recognizes the vehicle license plate of the target vehicle. The image is de-noised, then grayscale, and then the edge is detected. The connected region is preliminarily determined by morphology combined with edge detection, and then the license plate area is accurately located according to the inherent characteristics of the license plate. After locating the license plate, the license plate is binary, then the license plate is segmented into a single character by the vertical projection method combined with the prior knowledge of the license plate. The resulting characters are recognized by contour-based template matching. The target vehicle is tracked by Kalman filter. In the process of tracking the license plate, the license plate area is small, easy to be blocked by other vehicles. At this point, the huge shape of the vehicle can help us track the vehicle, but when tracking the vehicle, the target vehicle is easily blocked by other vehicles. An improved ORB algorithm based on feature point matching is proposed to solve the problem of vehicle real-time tracking without losing in partial occlusion. It has translation, rotation, zoom invariance. The improved ORB algorithm uses Laplace extremum to remove false corner points after FAST detection. Compared with ORB algorithm, it improves the accuracy of matching and the speed of detection. The improved FAST detection feature point fast, BRIEF (Binary Robust Independent Elementary Features) descriptor shortens the time of establishing descriptor and reduces the storage space. Therefore, the speed of feature point matching is improved and the need of real-time tracking is satisfied. The experimental results show that the improved ORB algorithm can track partially occluded vehicles quickly and accurately in the presence of illumination changes and noise interference.
【学位授予单位】:辽宁科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U495
【相似文献】
相关期刊论文 前10条
1 张晓媚;陈伟海;刘敬猛;赵志文;;基于柔性曲杆的车辆跟踪算法设计与实现[J];北京航空航天大学学报;2011年07期
2 郭锋;王秉政;杨晨晖;;复杂背景下车辆跟踪的改进算法及逆行检测[J];图学学报;2013年04期
3 刘青;张晓晖;陈建新;侯云;;基于先验知识的高速公路逃费车辆跟踪算法研究[J];公路工程;2013年04期
4 杨敏;裴明涛;王永杰;董震;武玉伟;;一种基于运动目标检测的视觉车辆跟踪方法[J];北京理工大学学报;2014年04期
5 黄福献;车辆跟踪管理系统简介[J];汽车运用;2001年06期
6 曹智英;;基于学习机制的时空车辆跟踪与索引框架[J];现代计算机;2007年05期
7 朱华林;;基于高清视频检测和高清图片识别的车辆跟踪系统设计[J];交通世界(运输.车辆);2011年07期
8 曾智洪;高速公路中的行车道检测和车辆跟踪(英文)[J];自动化学报;2003年03期
9 周志宇,汪亚明,曹丽;基于模糊聚类和α-β-γ滤波的车辆跟踪[J];浙江工业大学学报;2004年01期
10 陈继红;;基于3G技术的车辆跟踪服务系统的研究[J];物探装备;2008年03期
相关会议论文 前3条
1 杨华;邹月娴;刘志刚;时广轶;关佩;王一言;;基于视频的复杂交通场景车辆跟踪技术研究[A];第六届全国信息获取与处理学术会议论文集(1)[C];2008年
2 孙燎原;石川;张杨;;基于GoogleMaps的车辆跟踪态势显示系统研究与实现[A];第十六届全国青年通信学术会议论文集(上)[C];2011年
3 张晖;董育宁;夏洋;;一种基于改进的GVF-Snake模型的车辆跟踪算法[A];第十三届全国图象图形学学术会议论文集[C];2006年
相关重要报纸文章 前4条
1 神州通信有限公司GIS部 廖志杰;构建中国空间信息服务网络平台系统(六)[N];通信产业报;2004年
2 中国全球定位系统技术应用协会GPS信息咨询服务部 曹冲;GPS上车[N];计算机世界;2002年
3 本报记者 杨滨;打牢百年精品客专的基石[N];人民铁道;2010年
4 庞伟燕;用科技编织安全网[N];中国邮政报;2011年
相关博士学位论文 前3条
1 吴刚;基于粒子滤波与增量学习的车辆跟踪方法研究[D];南京理工大学;2014年
2 徐旭;复杂环境下的车辆目标跟踪技术研究[D];吉林大学;2013年
3 王军伟;ITS中运动车辆自动跟踪方法的研究[D];中国农业大学;2003年
,本文编号:2309013
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2309013.html