神华煤直接液化残渣的萃取组分及模型化合物改性石油沥青
[Abstract]:With the increasing traffic volume, the requirements of asphalt pavement are becoming higher and higher. Because of the excellent performance of modified asphalt, it is widely used in the world. Direct coal liquefaction residue (DCLR) is a by-product of coal liquefaction process. It is similar to Trinidad Lake bitumen (TLA) in material composition and properties. The quantity of modified bitumen is smaller than that of TLA.. Using DCLR as asphalt modifier can not only make full use of liquefied residue, but also solve the environmental problems caused by it. In this paper, (HS), asphaltene (A), pre-asphaltene (PA) was prepared by step extraction of DCLR, and the performance of modified asphaltene was detected by adding three modifiers to petroleum asphalt. It is concluded that when the amount of HS is 4, the performance of modified asphalt conforms to the standard of ASTM D5710-95 40-55 of the United States. When PA is added, the three indexes of modified asphalt can not meet the standard at the same time. In addition, the model compounds of n-dodecane, n-eicosane, naphthalene and pyrene were selected as asphalt modifiers. The properties of modified asphalt were increased with the increase of modifier, and the ductility decreased first and then increased. Some properties of DCLR and modified asphalt were determined by thermogravimetric analysis (TG), TG-FTIR,FTIR) and fluorescence microscope. The trend of thermogravimetric loss and weight loss rate curve of seven modified asphalt and petroleum asphalt is the same, and the weight loss rate of modified asphalt is smaller than that of petroleum asphalt, but the difference is not significant. In the infrared spectra of all bitumen pyrolytic gases, there are absorption peaks in 3500-4000cm-1, which proves that H2O is produced in pyrolytic gases, and methane vibrates at 3015 cm-1. 2290-2400cm-1 is the vibrational absorption peak of CO2, the peak strength of CO2 and the modified asphalt are higher than that of petroleum asphalt, and the peak of 1374 cm-1 is the vibrational absorption peak of CO2, indicating that there is SO2; in the gas. 650-900 cm-1 is the absorption vibrational peak of benzene ring substituents. The pyrolysis products of bitumen are mainly aromatic hydrocarbons, alcohols and phenols. After pyrolysis of modified asphalt with n-dodecane and n-eicosane, 2290-2400cm-1 indicates that the peak strength of CO2 is higher than that of naphthalene and pyrene modified asphalt. These seven kinds of modified bitumen have more fluorescent substances than petroleum asphalt. After adding modifier, the aromaticity of partial oil in asphalt increases, which leads to the increase of fluorescence. After asphalt aging, the luminescent substances of modified asphalt extracted by DCLR are still in the form of dots. The modified asphalt of the model compound is shown as a short rod structure. In this paper, there are no new functional groups in the modified asphalt by infrared detection. It is speculated that the modifier and petroleum asphalt are only mixed physically and there is no chemical reaction.
【学位授予单位】:西北大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U414
【参考文献】
相关期刊论文 前10条
1 季节;索智;石越峰;李鹏飞;赵永尚;;煤直接液化残渣与沥青共混后的性能试验研究[J];公路交通科技;2016年05期
2 周燕;吉鹏飞;张凯;郭红梅;;沥青热老化红外光谱分析[J];天津城建大学学报;2016年02期
3 杨燕红;刘媛媛;孙鸣;宋真真;赵香龙;马晓迅;;煤沥青与石油沥青共混改性及其热解特性[J];化工进展;2016年02期
4 季节;石越峰;索智;徐世法;许鹰;;DCLR与TLA改性沥青胶浆的流变性能对比[J];沈阳建筑大学学报(自然科学版);2015年06期
5 陈静;孙鸣;代晓敏;姚一;刘媛媛;贺敏;吕波;赵香龙;马晓迅;;基于苯甲醛交联剂的煤直接液化残渣改性石油沥青[J];燃料化学学报;2015年09期
6 季节;石越峰;索智;徐世法;李鹏飞;;煤直接液化残渣共混改性沥青的性能和微观结构[J];北京工业大学学报;2015年07期
7 孔劲媛;熊国跃;刘挺嵩;;我国沥青市场主要供应商及竞争格局分析[J];当代石油石化;2014年08期
8 张东兴;赵威为;章照宏;朱自强;肖嘉莹;;改性沥青中SBS改性剂掺量的热重分析[J];公路工程;2014年04期
9 乔望;;《国家公路网规划(2013年-2030年)》发布[J];交通世界(建养.机械);2013年07期
10 姜丽伟;;特立尼达湖改性沥青路用性能试验研究[J];四川建筑科学研究;2013年01期
相关博士学位论文 前5条
1 向丽;废橡胶粉/SBS复合改性沥青的机理和性能研究[D];中国石油大学(华东);2011年
2 刘汉湖;岩矿波谱数据分析与信息提取方法研究[D];成都理工大学;2008年
3 程昱川;几类层状超薄膜结构的分子光谱研究[D];吉林大学;2006年
4 景彦平;沥青结构及高聚物改性沥青机理研究[D];长安大学;2006年
5 王仕峰;苯乙烯—丁二烯共聚弹性体改性沥青的研究[D];华南理工大学;2001年
相关硕士学位论文 前10条
1 刘媛媛;基于醛类交联剂的煤焦油沥青改性石油沥青[D];西北大学;2016年
2 陈静;基于醛类交联剂的煤直接液化残渣改性石油沥青[D];西北大学;2015年
3 赵永尚;煤直接液化残渣改性沥青及其胶浆的性能研究[D];北京建筑大学;2015年
4 王华;道路沥青性能的综合分析与评价[D];长安大学;2014年
5 李亮;新疆兵团垦区公路沥青路面沥青再生剂应用研究[D];新疆农业大学;2013年
6 向东;冷再生沥青胶结料试验方法及性能评价研究[D];重庆交通大学;2013年
7 何亮;煤液化残渣复合改性沥青制备及其性能研究[D];长安大学;2013年
8 方成志;环保芳烃树脂在轮胎胶料中的应用研究[D];华南理工大学;2013年
9 薄强龙;超支化聚合物在煤液化残渣复合防水材料中的应用与研究[D];济南大学;2014年
10 温永;有机蒙脱土—氢氧化物改性沥青的制备及其阻燃性能研究[D];长安大学;2012年
,本文编号:2331807
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2331807.html