水环境下大跨度上承式拱桥的静、动力特性分析
[Abstract]:In recent years, with the development of freeway and the increase of railway speed, the demand for road alignment is increasing day by day, so it is inevitable to cross deep gully canyons along the line. Because of the terrain condition of the canyon, the scheme of the above arch bridge is reasonable. However, for water rich areas, canyons are a multi-choice terrain for water conservancy projects. From the point of view of realizing economic benefit, the climbing height of the line should not be too high, and the decrease of the design elevation will cause the arch ring to be flooded by the reservoir water. Although the water and air are both fluid, there are still some differences in some specific characteristics. Based on this, this paper carries out an analysis and research on the large-span arch bridge in the reservoir area: first of all, In view of the environmental characteristics of long-span overbearing arch bridges different from other arch bridges in the reservoir area, it is determined that the main influencing factors of this kind of arch bridges are different from other arch bridges in dynamic and dynamic analysis. The underwater structure of long span overbearing arch bridge will be affected by water. In normal water environment, the effect of flowing water on the structure mainly lies in the lateral flow pressure and vertical water buoyancy. Under the action of earthquake, the structure will deform and vibrate, and at the same time, it will cause the water body to vibrate, so that the water body will react on the structure through the form of dynamic water pressure, thus forming the action and reaction between the structure and the water body and running through the earthquake action all the time. Therefore, fluid-solid coupling is the main influencing factor under earthquake. Secondly, the basic characteristics of the fluid are studied, and the calculation formulas of the flowing water pressure and the water buoyancy of the underwater arch ring are obtained. In this paper, the calculation theory of fluid-solid coupling is studied, and the fluid-structure coupling calculation method suitable for underwater arch ring structure is explored. Thirdly, the finite element theory of arch structure is studied. Although the curved beam element is more suitable for the load effect, free vibration and forced vibration of the arch, but because of its complexity, the engineering finite element method is more often used to solve the arch structure effect. Finally, according to the engineering example, the spatial finite element model of long-span overbearing arch bridge is established, and two main influencing factors in static analysis are considered, which are the effect of flowing water pressure and water buoyancy. This paper analyzes the influence degree and law of two main influencing factors on the internal force of arch ring, discusses whether the influence of flowing water pressure can be ignored under the influence of flowing water velocity, regards reservoir water as static water, and probes into the fortification area of low intensity earthquake. The height at which the arch can be submerged in a still water environment; After considering the fluid-solid coupling, the influence of the submergence depth of the arch ring on the natural vibration characteristics of the arch bridge and the degree and law of the influence of the submergence depth of the arch ring on the internal force of the arch ring under the action of the earthquake at this time are studied, and the fortification area of the high intensity earthquake is discussed. The height at which the arch can withstand the inundation.
【学位授予单位】:长沙理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U441;U448.22
【相似文献】
相关期刊论文 前10条
1 刘晓剑;;双铰型上承式拱桥施工监测[J];山西建筑;2009年34期
2 尹超;;大跨度上承式钢筋混凝土箱肋拱桥设计[J];中国市政工程;2010年01期
3 刘迎春;薛素铎;上官兴;;上承式拱桥结构形式变化综述[J];公路;2012年03期
4 尹超;;大跨度上承式钢筋混凝土箱肋拱桥设计与施工[J];公路交通科技(应用技术版);2011年11期
5 唐家祥;主跨180m上承式吊桥方案研究[J];桥梁建设;1991年01期
6 文启济;文武;王家河;;上承式无推力拱桥的施工[J];公路交通技术;2006年01期
7 马长青;;上承式50m钢筋混凝土拱肋施工技术[J];西部探矿工程;2006年03期
8 娄俊杰;马敏生;覃勇刚;;上承式单肋拱桥稳定特性研究[J];城市道桥与防洪;2009年02期
9 付殿文;;复合型上承式拱桥混凝土拱圈的浇注及变形控制[J];天津建设科技;2010年06期
10 李世平,刘华,吴忠华;上承式系杆拱桥结构特点与施工[J];公路交通技术;2005年03期
相关会议论文 前8条
1 王华廉;周世军;;上承式吊桥非线性分析[A];全国索结构学术交流会论文集[C];1991年
2 唐家祥;;主跨180米上承式吊桥方案研究[A];中国土木工程学会桥梁及结构工程学会第九届年会论文集[C];1990年
3 栗金光;;180米上承式吊桥整体模型试验[A];全国索结构学术交流会论文集[C];1991年
4 曾志斌;文峰;史永吉;;湘潭大桥上承式钢桁梁裂纹原因分析及加固[A];第九次全国焊接会议论文集(第2册)[C];1999年
5 李荣昌;张传东;陈学民;张晶;;提高跨度42.2m上承式钢桁梁横向刚度的对策措施[A];2008年科技学术研讨年提速安全与和谐铁路论文集[C];2008年
6 楼庄鸿;刘陌生;;上承式悬索桥[A];中国公路学会桥梁和结构工程学会2003年全国桥梁学术会议论文集[C];2003年
7 翁辉;王炎;郝超;;浙江杭新景高速公路千岛湖1号桥设计[A];中国公路学会桥梁和结构工程分会2005年全国桥梁学术会议论文集[C];2005年
8 王孝国;张晓燕;;上承式钢管砼拱桥的计算分析[A];第八届全国结构工程学术会议论文集(第Ⅲ卷)[C];1999年
相关博士学位论文 前1条
1 刘迎春;上承式拉索组合拱桥索力优化与受力性能研究[D];北京工业大学;2012年
相关硕士学位论文 前10条
1 贺红强;上承式斜柱桥静力特性研究[D];广西大学;2016年
2 黎亮;水环境下大跨度上承式拱桥的静、动力特性分析[D];长沙理工大学;2015年
3 曹宇;大跨径上承式拱桥施工控制研究[D];吉林大学;2013年
4 冯祁;大跨度铁路上承式拱桥列车走行性研究[D];中南大学;2010年
5 朱婧;提速线上承式钢桁梁横向加固技术研究[D];西南交通大学;2006年
6 吴益波;铁路大跨度上承式钢筋混凝土箱形拱桥设计研究[D];西南交通大学;2013年
7 李静;某大跨上承式复合拱结构受力特性分析[D];太原理工大学;2011年
8 韩金秀;跨度64m上承式八七型铁路应急抢修钢梁动力响应分析[D];北京交通大学;2010年
9 孙毅;大跨度上承式拱桥减震控制研究[D];重庆大学;2006年
10 孔遁;跨津滨高速公路双铰型上承式拱桥施工技术研究[D];西南交通大学;2005年
,本文编号:2336531
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2336531.html