盾构推进电液系统动力学特性及轨迹实时精确控制研究
[Abstract]:The shield machine is a kind of tunneling equipment for tunnel construction, and integrates the functions of cutting, pushing control, segment assembly, guide measurement and so on. In the face of complex geology and many unpredictable factors, there will be such problems as the failure of the excavation, the instability of the excavation surface, the deviation of the axis, etc., which can lead to the deformation of the ground and the collapse of the building. Safe and efficient tunneling is a prominent problem in tunnel construction. The dynamic characteristics of shield propulsion system and the method of trajectory control under sudden load are studied in this paper. The purpose of this paper is to improve the safety of driving and the quality of tunnel forming, and to have the background of engineering application and the value of scientific research. In this thesis, the dynamic model of shield propulsion system is established, and the multi-variable nonlinear coupling relation of thrust and shield attitude control is revealed, and a real-time accurate control method for shield track error is proposed. The method has two characteristics: firstly, the first is a dynamic regulation performance with good thrust force, the existing pressure dynamic control research adopts a servo valve, In this paper, a reducing-order pressure regulation system for shield is proposed, and the feed-forward function and the parameter self-adaptive adjustment of the adaptive robust control under the order-reducing system are realized, and the frequency response of the pressure regulation is improved and the rapid tracking is realized. The classical method control the amplitude of 1. 5MPa of the sinusoidal pressure of 1Hz, resulting in about 30. The phase lag and the attenuation of the amplitude of 20%, the new pressure control algorithm proposed in this paper can significantly reduce the lag error caused by the above dynamic defects. The second is the speed self-stability of the adaptive mutation load, and by studying the influence of the abrupt load on the propulsion speed, it is revealed that the main reason for the speed fluctuation under the current control method is not to consider the change of the friction of the shield body, and the friction force of the shield body is used as the dynamic variable, The LuGre model of the shield body is established and the Strebbeck linear effect of the low-speed region is fully considered, and the compensation control for the change of the friction force is carried out more accurately, and the speed fluctuation caused by the abrupt load is effectively reduced, and the control accuracy of the highest position is 0.2mm. The trajectory error control method disclosed by the invention is suitable for the three-dimensional trajectory planning and the error dynamics, can enable the tunneling track to converge in a given track in the underground three-dimensional space, and greatly improves the track tracking precision and the efficiency compared with the traditional method of the two-dimensional trajectory planning and control, and meanwhile, the snake track caused by the load change or the adjustment lag in the deviation correction process can be avoided, and the reference basis is provided for the automation of the shield tunneling. in addition, an interactive simulation method for simulating the distribution load of a cross-section heterogeneous working condition in combination with an experiment is provided, and the formation simulation hydraulic multi-mode loading test bed for the test of the shield propulsion system is constructed, has the active/ passive load loading and the force/ speed composite loading function, and improves the formation simulation performance of the experimental system. The structure of the full text is as follows: The first chapter gives a brief introduction to the current situation of the industry and the current research situation of the academic circle, and analyzes some shortcomings of the existing research, and introduces the research focus of this paper, namely, the propulsive force, the propulsion speed, and the method of control of the driving track. The second chapter introduces the existing two typical propulsion electro-hydraulic systems, namely the relief valve adjusting type system and the pressure reducing valve adjusting type system, analyzes the working principle and the structural characteristics, and expounds the different adjusting methods of the two systems through the typical working conditions. Based on the mathematical modeling of the key adjusting element _ proportional pressure valve and the proportional speed-regulating valve of the system, the steady and dynamic working characteristics of the system are analyzed through the model, and the two sets of systems are modeled by AMESim software, and the driving conditions of the cross section are simulated and analyzed. The simulation results show that the relief valve adjusting system has better regulation performance and is less affected by the formation change. The third chapter introduces the integrated test bed of the shield propulsion electro-hydraulic system, including the mechanical structure of the test bed, the propulsion system, the composition of the loading system, the automatic control module and the electrical system. The fourth chapter is the control method of propulsion control and propulsion speed. For the control method of thrust force, the realization of the self-adaptive Rurod algorithm for pressure regulation is given, and the simulation and experimental results show that the control effect is better than the classical dead zone step compensation control and proportional integral control. The tracking sine effect basically has no phase lag and amplitude value attenuation, and the dynamic performance of the pressure control is greatly improved. In the method of speed control, a shield dynamics model with LuGre model is established, the speed controller is designed to adapt to the sudden load, and the effectiveness is verified by simulation and experiment of speed-increasing regulation and speed-reduction regulation commonly used in the construction. In the fifth chapter, the three-dimensional coordinate trajectory control of the shield machine is studied, the dynamic model of the shield machine and the model of the error dynamics are established, which is a multi-variable coupled nonlinear multi-input multi-output model. The design method of the trajectory control is divided into three steps. The first step is to design the virtual input so that the three-dimensional coordinate error gradually converges to zero, and the second step is that the actual input signal can be converged to the designed virtual input, and the third step is to design the controller which takes into account the unknown disturbance. The effectiveness of the controller is then explained by the simulation study, and the design parameters which have a significant effect on the control performance are studied. The sixth chapter gives the research conclusion of the full text, and discusses the prospect of future work.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:U455.39
【相似文献】
相关期刊论文 前10条
1 王如路;蔡轶曼;刘建航;;上海市轨道交通4号线盾构隧道穿越地铁运营线路的监护工程[J];地下工程与隧道;2004年03期
2 沈斌;“盾构一号软件”的开发研究[J];施工技术;2005年06期
3 刘东亮;电液比例技术在盾构推进系统中的应用[J];建筑机械;2005年08期
4 高俊强,胡灿;盾构推进和地表沉降的变化关系探讨[J];南京工业大学学报(自然科学版);2005年04期
5 袁嘉,邓玉军;盾构不能推进的原因分析及处理方法[J];工程机械;2005年01期
6 管会生;高波;;盾构切削刀具寿命的计算[J];工程机械;2006年01期
7 范伟;;盾构隧道始发技术[J];科技情报开发与经济;2006年02期
8 龚国芳;胡国良;杨华勇;;盾构推进系统同步协调控制实验分析[J];液压与气动;2006年07期
9 朱合华;徐前卫;傅德明;廖少明;张冠军;;地层适应性盾构模型试验设计方法初探[J];岩土力学;2006年09期
10 刘慧彬;;与世界最大直径盾构的亲密接触[J];建筑机械;2006年21期
相关会议论文 前10条
1 杨磊;孙连;;基于盾构施工数据库的盾构动态设计数据分析方法研究[A];2011中国盾构技术学术研讨会论文集[C];2011年
2 沈斌;;“盾构之星软件”产品研究与开发技术综述——盾构姿态自动监测的原理与方法[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
3 朱继文;;盾构隧道与下立交长距离叠交工程设计施工技术[A];2010城市轨道交通关键技术论坛论文集[C];2010年
4 张志鹏;方江华;张智宏;;小半径隧道中盾构分体始发施工技术[A];2011中国盾构技术学术研讨会论文集[C];2011年
5 沈斌;;“盾构之星软件”研究与开发技术综述——盾构姿态自动监测的原理与方法[A];全国城市地下空间学术交流会论文集[C];2004年
6 朱合华;徐前卫;廖少明;傅德明;张冠军;;土体-盾构机器系统的相似理论研究[A];2004年度上海市土力学与岩土工程学术年会论文集[C];2004年
7 方依文;李青林;王文治;郑仔弟;;盾构下穿城铁线施工技术[A];北京市政第一届地铁与地下工程施工技术学术研讨会论文集[C];2005年
8 龚国芳;胡国良;杨华勇;;盾构推进系统同步协调控制实验分析[A];第四届全国流体传动与控制学术会议论文集[C];2006年
9 庄欠伟;龚国芳;杨华勇;;盾构机推进液压系统比例压力流量复合控制仿真[A];第四届全国流体传动与控制学术会议论文集[C];2006年
10 潘国荣;徐然;陈晓龙;;盾构姿态可视化自动测量系统的开发与应用[A];数字测绘与GIS技术应用研讨交流会论文集[C];2008年
相关重要报纸文章 前10条
1 章华平;上海大型盾构长距离穿越浅覆盖层[N];中国建设报;2009年
2 记者 李媛 通讯员 焦绪;为了让盾构在老街“足下”穿行[N];建筑时报;2009年
3 通讯员 冯玉平;十八局集团四公司盾构施工创“天津速度”[N];中国铁道建筑报;2010年
4 本报记者 夏艺心 通讯员 孟娜;时刻以劳模标准为标尺[N];中华建筑报;2010年
5 本报通讯员 刘健 高锐轩;“滴水不漏”穿越长湖[N];人民铁道;2009年
6 记者 徐瑞哲;崇明隧道未动一土完成“彩排”[N];解放日报;2006年
7 记者白秀喜 通讯员高锐轩 刘健;我国最长湖底盾构隧道贯通[N];中国建设报;2009年
8 记者 周炜;地铁一号线盾构昨开钻[N];西安日报;2010年
9 记者 王蔚 通讯员 陈烨;11号线大直径盾构顺利出洞[N];文汇报;2011年
10 本报记者 袁弘;宁愿地下苦 确保地面安[N];成都日报;2009年
相关博士学位论文 前3条
1 刘志斌;盾构推进电液系统动力学特性及轨迹实时精确控制研究[D];浙江大学;2015年
2 矫伟刚;盾构推进对在建地铁风井或车站结构的影响研究[D];中国矿业大学(北京);2012年
3 曹奕;软土中盾构隧道的长期非线性固结变形研究[D];浙江大学;2014年
相关硕士学位论文 前10条
1 苏守一;盾构隧道穿越群房屋安全风险研究[D];北京交通大学;2012年
2 刘浩;盾构直接切削大直径桩基的刀具选型设计研究[D];北京交通大学;2014年
3 张丰收;盾构隧道探地雷达探测的介电特性试验、数值模拟及应用[D];同济大学;2007年
4 袁永盛;盾构推进机构动力学分析与研究[D];华东交通大学;2011年
5 何文龙;盾构推进对南京纬七路高架桥深大桩基影响的分析[D];南京林业大学;2009年
6 邓颖聪;盾构推进系统的分区建模与性能评价[D];上海交通大学;2010年
7 田科;盾构机液压长管道振动模态分析与试验研究[D];中南大学;2011年
8 侯典清;盾构推进系统顺应特性及掘进姿态控制研究[D];浙江大学;2013年
9 丁晟;盾构机回转系统弯扭耦合及偏载效应研究[D];上海交通大学;2010年
10 季广丰;软土地层中盾构推进数值模拟[D];浙江大学;2004年
,本文编号:2369702
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2369702.html