基于交通流数据的城市交通拥堵检测方案研究
[Abstract]:At present, the problem of urban traffic congestion has become one of the problems hindering the development of world economy and the construction of urban modernization. Because of the rapid economic development in China, urban construction and road network construction can not keep up with the pace of national development, resulting in social problems, environmental problems are particularly serious. Real-time and fast detection of urban traffic congestion has become a major means to solve the problem of urban traffic congestion. In order to detect the occurrence of urban traffic congestion and provide the basis for urban traffic processing system, it is convenient to solve the traffic congestion problem in time by collecting traffic data in real time and constructing a traffic congestion detection model. In recent years, the research on urban traffic congestion detection schemes has developed rapidly. Relying on modern and advanced traffic detection and monitoring equipment, it can quickly collect relevant traffic data. Various feature extraction algorithms are used to extract traffic congestion features such as vehicle speed change, so as to design a variety of congestion detection schemes, but in the face of more and more traffic raw data and inefficient data collection means, Only relying on the vehicle speed and other few traffic data features can not get a timely and accurate traffic congestion detection results. In order to detect urban traffic congestion more timely and accurately, this paper proposes a traffic congestion detection scheme based on traffic flow data. By classifying the traffic flow data, extracting the multi-dimensional congestion characteristics, constructing a three-layer congestion detection model, adopting the trigger congestion detection process, reducing the time consumption of the detection process, and estimating the congestion degree. More accurate detection of traffic jams. At the same time, this paper also introduces another rapid development of urban traffic congestion detection technology-VANET (vehicle Ad Hoc Network), through the research of this technology to explore the future direction of solving urban traffic congestion problem. Finally, the performance of two traffic congestion detection schemes is evaluated by simulation experiments, and the future research direction of urban traffic congestion detection is described.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491
【参考文献】
相关期刊论文 前10条
1 郑淑鉴;杨敬锋;;国内外交通拥堵评价指标计算方法研究[J];公路与汽运;2014年01期
2 郑长江;路源;;基于支持向量机的城市道路交通拥堵判别算法研究[J];贵州大学学报(自然科学版);2014年01期
3 佘永业;赵力萱;罗东华;李熙莹;余志;;一种交通拥堵自动检测方法[J];计算机与现代化;2013年11期
4 胡启洲;刘英舜;郭唐仪;;城市交通拥堵态势监控的时空分布形态识别模型[J];交通运输系统工程与信息;2012年03期
5 孙健;刘琼;彭仲仁;;城市交通拥挤成因及时空演化规律分析——以深圳市为例[J];交通运输系统工程与信息;2011年05期
6 陈阳舟;田秋芳;张利国;;基于神经网络的城市快速路交通拥堵判别算法[J];计算机测量与控制;2011年01期
7 杨兆升;张茂雷;;基于模糊综合评判的道路交通状态分析模型[J];公路交通科技;2010年09期
8 杨祖元;黄席樾;杜长海;唐明霞;;基于FFCM聚类的城市交通拥堵判别研究[J];计算机应用研究;2008年09期
9 郝媛;徐天东;孙立军;;城市快速路常发性交通拥挤分析[J];交通与计算机;2007年02期
10 俎振山;韩凤春;;交通监控系统信息采集问题及应对方法研究[J];中国人民公安大学学报(自然科学版);2007年01期
相关会议论文 前3条
1 林群;关志超;杨东援;;深圳城市道路交通状态判别技术应用研究[A];第二届中国智能交通年会论文集[C];2006年
2 全永q,
本文编号:2377752
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2377752.html