当前位置:主页 > 科技论文 > 路桥论文 >

基于本体和描述逻辑的交通事件语义表现方法研究

发布时间:2018-12-16 17:05
【摘要】:基于本体和描述逻辑的交通事件语义识别和表达是智能交通领域的研究热点,能为城市交通管理和控制提供有效、完整、准确的实时交通状态信息,对于减轻交通压力,减少交通事故,提高交通运行效率和城市交通智能化水平均具有指导意义。然而,现有的计算机图像语义分析技术无法自动识别交通视频图像序列表达的交通事件高级语义,主要原因:一是缺乏对象的概念层次识别方法;二是低级的图像视觉概念映射到事件高级语义时存在“语义鸿沟”问题。这使得传统的交通场景事件理解方法大多忽略了语义分析,仅针对纯粹的图像数据进行分析。因此,道路交通事件内容的高级语义识别、表达和推理方法研究,是一项富有重要研究意义的课题。本文源于省基金资助项目“基于交通态势评估的道路安全推理研究”子课题的研究成果,共分三个部分:概念层次的对象识别方法研究、低级概念映射到高级语义的方法研究以及交通事件高级语义的识别、表达和推理系统开发。本文主要贡献如下:(1)利用改进的“LST-KDE”算法、基于HSI颜色空间的Camshift算法以及Hough变换等提取交通图像中对象的特征属性(颜色、纹理等);然后,借鉴领域本体理论,构建交通图像层次概念模型,将交通场景图像中拥有一定属性特征的对象映射为基本概念;最后,给出交通领域本体自动构建方法,建立了交通领域本体知识库,实现了交通场景事件中对象的概念层次识别,并为下文语义推理提供了概念基础。(2)为了解决“语义鸿沟”问题,以描述逻辑作为逻辑表达和推理的基础,利用基于谓词逻辑和Tableau算法的描述逻辑表达式搭建低级概念与高级语义之间的桥梁,提出了利用低级概念描述高级语义的表达方法。其中,描述逻辑角色集是概念映射到语义以及语义推理的关键。为此,引入RCC8空间拓扑和锥形空间方向模型,描述场景对象之间的空间拓扑和方向关系,以此作为描述逻辑的角色集的主要组成部分。(3)提出了交通事件语义识别、推理和表达系统,包括属性融合、语义映射及事件识别和表达3个模块。首先采用训练好的最佳样本图像序列将完整交通事件划分为若干子事件,构建子事件的样本图像序列库;然后利用FSM自动机以及描述逻辑RQL查询语言自动推理并识别每个子事件,最终实现完整交通事件的语义识别和表达。本研究的特点及创新性:使用本体和描述逻辑等能够被计算机识别和处理的形式化自然语言,构建了结构化的语义表达系统;通过模拟人脑思维进行交通场景图像的语义分析,识别并推理场景中交通事件态势演化全过程,为交通场景理解、交通图像检索以及交通事件语义识别和表达提供新的思路和方法。
[Abstract]:Semantic identification and representation of traffic events based on ontology and description logic is a research hotspot in the field of intelligent transportation. It can provide effective, complete and accurate real-time traffic state information for urban traffic management and control, and reduce traffic pressure. It is of guiding significance to reduce traffic accidents, improve traffic efficiency and intelligent level of urban traffic. However, the existing computer image semantic analysis technology can not automatically identify the high-level semantics of traffic events expressed by traffic video image sequence. The main reasons are as follows: first, the lack of object conceptual hierarchy recognition method; Second, there is a semantic gap problem when the low-level image vision concept is mapped to the event high-level semantics. This makes the traditional traffic scene event understanding methods mostly ignore the semantic analysis and only analyze the pure image data. Therefore, the study of high-level semantic recognition, representation and reasoning of road traffic events is an important research topic. This paper derives from the research results of the project "Road Safety reasoning Research based on Traffic situation Assessment", which is funded by the provincial fund. It is divided into three parts: the research of object recognition method at conceptual level, The method of mapping low-level concepts to high-level semantics, and the identification, representation and reasoning system development of traffic event high-level semantics. The main contributions of this paper are as follows: (1) using the improved "LST-KDE" algorithm, the Camshift algorithm based on HSI color space and Hough transform to extract the feature attributes (color, texture, etc.); Then, using domain ontology theory as reference, the hierarchical conceptual model of traffic images is constructed, and the objects with certain attributes in traffic scene images are mapped to basic concepts. Finally, the automatic construction method of traffic domain ontology is given, the knowledge base of traffic domain ontology is established, and the concept hierarchy recognition of objects in traffic scene events is realized. It provides the conceptual basis for the following semantic reasoning. (2) in order to solve the problem of "semantic divide", descriptive logic is used as the basis of logic expression and reasoning. The description logic expression based on predicate logic and Tableau algorithm is used to build the bridge between the low-level concept and the high-level semantics, and a representation method is proposed to describe the high-level semantics by using the low-level concept. Among them, descriptive logical role set is the key to mapping concept to semantic and semantic reasoning. In this paper, RCC8 spatial topology and conical spatial orientation model are introduced to describe the spatial topology and directional relationship between scene objects, which is regarded as the main component of the role set of description logic. (3) Traffic event semantic recognition is proposed. The reasoning and representation system includes three modules: attribute fusion, semantic mapping, event recognition and representation. Firstly, the complete traffic events are divided into several sub-events by using the best sample image sequence, and the sample image sequence database of the sub-event is constructed. Then, FSM automata and description logic RQL query language are used to automatically infer and recognize each sub-event, and finally complete traffic event semantic identification and representation are realized. The characteristics and innovation of this study are as follows: a structured semantic representation system is constructed using formal natural languages such as ontology and description logic which can be recognized and processed by computer. The semantic analysis of traffic scene image is carried out by simulating human brain thinking, and the whole process of traffic event situation evolution in the scene is recognized and inferred, so that the traffic scene can be understood. Traffic image retrieval and semantic identification and representation of traffic events provide new ideas and methods.
【学位授予单位】:山东理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U495

【相似文献】

相关期刊论文 前10条

1 陆建江;李言辉;张亚非;周波;康达周;;限制数量约束的扩展模糊描述逻辑的推理复杂性(英文)[J];Journal of Southeast University;2007年02期

2 王静;张健沛;杨静;程丽丽;;面向矛盾问题的动态描述逻辑扩展研究[J];哈尔滨工程大学学报;2009年07期

3 张燕;;描述逻辑研究进展[J];江南大学学报(自然科学版);2010年01期

4 王生生;刘大有;吴瑕;谢琦;郭昊;;模糊空间描述逻辑及应用[J];吉林大学学报(工学版);2010年06期

5 周鑫;张建军;;基于描述逻辑的语义Web本体研究[J];科学技术与工程;2007年03期

6 胡鹤;杜小勇;;一种基于区间模糊理论的描述逻辑系统[J];华中科技大学学报(自然科学版);2005年S1期

7 曹茂俊;尚福华;滕雪萍;;基于描述逻辑的可扩展的案例表示及检索研究[J];科学技术与工程;2010年11期

8 曹凯;于少伟;;基于案例及描述逻辑的道路交通微观态势推理模型[J];中国安全科学学报;2014年01期

9 王蓁蓁;;朴素模糊描述逻辑知识库构造及其朴素推理[J];应用科技;2012年06期

10 郝斐;董庆超;曾广军;;一种基于描述逻辑的UML模型验证方法[J];计算机与数字工程;2011年11期

相关会议论文 前6条

1 文斌;甘健侯;夏幼明;徐天任;;基于ALC的扩展描述逻辑ALC~+[A];逻辑学及其应用研究——第四届全国逻辑系统、智能科学与信息科学学术会议论文集[C];2008年

2 曹发生;;描述逻辑系统UEVN中概念的包含算法[A];“回顾与前瞻:中国逻辑史研究30年”全国学术研讨会论文集[C];2010年

3 文斌;甘健侯;夏幼明;徐天伟;;框架表示法到扩展描述逻辑ALC+的转换初探[A];2008通信理论与技术新进展——第十三届全国青年通信学术会议论文集(上)[C];2008年

4 吴凌坤;汤庸;汤娜;;一种基于时态描述逻辑的工资智能决策支持系统的实现[A];第二十三届中国数据库学术会议论文集(研究报告篇)[C];2006年

5 康达周;徐宝文;陆建江;李言辉;;支持语义web模糊本体的描述逻辑(英文)[A];全国语域web与本体能研讨会论文集[C];2006年

6 李敏静;郭佳宏;;基于描述逻辑的概念表示[A];2012·学术前沿论丛——科学发展:深化改革与改善民生(上)[C];2012年

相关重要报纸文章 前1条

1 中国科学院计算技术研究所 常亮邋史忠植;语义Web的逻辑基础[N];计算机世界;2007年

相关博士学位论文 前10条

1 王静;基于可拓集的描述逻辑研究[D];哈尔滨工程大学;2009年

2 邹婷婷;描述逻辑中若干问题的研究[D];吉林大学;2013年

3 张小旺;超协调描述逻辑[D];北京大学;2011年

4 纪祥;二维描述逻辑的元建模及其应用[D];吉林大学;2013年

5 孙小林;2-型模糊描述逻辑及其在本体进化中的应用研究[D];华中科技大学;2007年

6 沈国华;基于描述逻辑的语义Web服务建模及推理研究[D];南京航空航天大学;2009年

7 古华茂;描述逻辑概念可满足性推理研究[D];浙江大学;2009年

8 方流;描述逻辑推理优化技术研究[D];浙江大学;2008年

9 王海龙;支持模糊数据类型表示的模糊描述逻辑研究[D];东北大学;2009年

10 唐素勤;面向语义Web的描述逻辑本体构建[D];中南大学;2011年

相关硕士学位论文 前10条

1 张娜;基于DL-Lite的动态描述逻辑研究[D];桂林电子科技大学;2015年

2 李莹;基于描述逻辑的教育突发事件语义描述及知识推理方法研究[D];云南师范大学;2015年

3 于云;基于本体和描述逻辑的交通事件语义表现方法研究[D];山东理工大学;2015年

4 唐英英;基于扩展描述逻辑的事件实例推理研究[D];上海大学;2014年

5 文斌;基于描述逻辑的语义Web知识推理研究[D];云南师范大学;2005年

6 甘晓丽;基于描述逻辑的概念建模研究[D];广西师范大学;2006年

7 领吉;描述逻辑与规则整合研究[D];吉林大学;2010年

8 李国媛;模糊描述逻辑扩展模糊软集的研究[D];东北师范大学;2012年

9 张瑞霞;基于描述逻辑的定性空间推理研究[D];重庆大学;2010年

10 袁佳乐;描述逻辑归结推理的研究[D];华东交通大学;2009年



本文编号:2382741

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2382741.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户472b8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com