基于Kalman滤波的高速公路交通流实时状态估计方法研究
[Abstract]:In recent years, with the continuous improvement of social and economic level, the highway in China has a rapid development, which plays an important role in the social and economic activities. However, frequent highway traffic accidents also bring huge economic losses to the social economy. To grasp and estimate the state of expressway traffic flow quickly and accurately is of great significance for making reasonable and effective expressway management and control strategy, which is helpful to alleviate the traffic congestion and improve the safety of expressway. However, due to the limited detection equipment can not provide the highway traffic operation state, so this paper relies on the National Natural Science Foundation project "Highway speed discrete characteristics," The research on mechanism and control method "and Nanjing Science and Technology Bureau project" Expressway Traffic flow State estimation and Safety early warning system ", based on the measured data, the spatial-temporal correlation characteristics of continuous multi-section traffic flow parameters of expressway are deeply studied. By establishing the real-time state estimation method of freeway traffic flow based on Kalman filter, the real-time estimation of the traffic flow in the blind area of highway detection is carried out in real time, which provides the theoretical basis and technical support for the formulation of efficient expressway management and control strategy. Firstly, based on the measured data, the spatial-temporal correlation coefficient of traffic flow parameters is introduced to analyze the temporal and spatial correlation of traffic flow parameters of multi-section continuous detector in freeway. It provides a data basis for the traffic flow state estimation in the following blind areas, and determines the length of the road segment estimated by the following model state. Secondly, the actual estimation effect of different macroscopic traffic flow models is studied. The parameters of different macroscopic traffic flow models are calibrated online by genetic algorithm, and the calibrated models are applied to estimate the state of sections with strong temporal and spatial correlation. The optimal traffic flow model of traffic flow state estimation is selected. At the same time, the sensitivity of the model parameters is analyzed. The relationship between the accuracy of the model and the detection interval and the distance between the sections is discussed. Finally, the Jiang-Zhu-Wu model is selected as the traffic flow state estimation model, in which the free flow velocity and the congestion propagation velocity are the key parameters of the model. The model has the best effect when the detection interval is 30s and the partition distance is 800m. Thirdly, based on the principle of "Recursion-Estimator-Correction" of Kalman filter, the traffic flow state estimation models based on extended Kalman filter and unscented Kalman filter are constructed, and the steps of state estimation are given. Finally, the traffic flow state estimation model is applied to the traffic flow estimation model based on the measured data and its effect is evaluated, including the tracking ability of the two state estimation models to the sudden change of the traffic flow state, the comparative analysis of the state estimation error, and so on. At the same time, the effect of traffic flow state estimation model under different detector layout schemes is discussed, the error of different layout schemes is given, and the reference basis for detector layout is provided.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U491.112
【相似文献】
相关期刊论文 前10条
1 刘智平;王凤群;单刚;;交通流状态辨识系统集成研究[J];科技导报;2007年22期
2 王雷;周小路;熊志金;;智能运输系统中交通流状态辨识算法研究[J];交通与运输(学术版);2008年01期
3 董春娇;邵春福;谢坤;李慧轩;;道路网交通流状态变化趋势判别方法[J];同济大学学报(自然科学版);2012年09期
4 何海燕;;交通流状态辨识系统框架分析[J];现代商贸工业;2013年04期
5 吴兵,周闻钧,张维东;利用数据挖掘技术建立城市区域交通流状态分析预测模型[J];公路交通技术;2003年01期
6 张敬磊;王晓原;;交通流状态辨识小波算法研究[J];武汉理工大学学报(交通科学与工程版);2006年05期
7 王辉;王孝坤;王权;;一种交通流状态智能推理系统[J];系统工程;2007年12期
8 姜ei闻;罗霞;;应用支持向量机的交通流状态预测方法研究[J];西南民族大学学报(自然科学版);2009年04期
9 蒋锐;郭忠印;孔令旗;;高密度交通流状态下行车安全性分析[J];交通信息与安全;2009年04期
10 徐琳;曲仕茹;;基于数据流挖掘的交通流状态辨识方法研究[J];西北工业大学学报;2011年01期
相关会议论文 前1条
1 汪凌;;一种基于知识的城市交通流状态快速识别方法及应用[A];第八届中国智能交通年会论文集[C];2013年
相关博士学位论文 前1条
1 张生;拉格朗日体系下高速公路网监控方法研究[D];长沙理工大学;2014年
相关硕士学位论文 前7条
1 杨万波;基于Kalman滤波的高速公路交通流实时状态估计方法研究[D];东南大学;2015年
2 李维;冰雪条件下城市道路网交通流状态演变研究[D];哈尔滨工业大学;2010年
3 齐龙涛;基于粒子滤波的交通流状态预测及其优化研究[D];北京交通大学;2011年
4 刘卫铮;基于大车混入率的交通流状态安全性研究[D];河北工业大学;2007年
5 刘海红;交通流状态非参数辨识关键理论及方法研究[D];山东理工大学;2007年
6 胡功宏;高速公路交通流状态安全性评价与对策研究[D];重庆交通大学;2008年
7 张敬磊;基于数据挖掘的交通流状态辨识算法研究[D];山东理工大学;2006年
,本文编号:2397117
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2397117.html