基于生存分析的通勤行为出发时间研究
[Abstract]:Commuting is not only a high proportion of daily travel behavior of urban residents, but also one of the most basic and important behaviors. Especially in the rush hour and area of commuting concentration, traffic congestion of early and late commuting is easy to be induced. The departure time of commuting behavior is an important parameter to reflect the time and space distribution of commuting traffic, so it is necessary to study it deeply. This paper takes "departure time of commuting behavior" as the starting point, and considers the influence factors of commute behavior departure time from the angle of individual. In this paper, the commuter travel behavior data are obtained by questionnaire survey. Based on the survival analysis theory, many factors affecting the commuters' departure time are extracted, and some links, such as variable selection, model assumption condition selection, etc. The Cox risk model of commuting behavior departure time is established. According to the regression results of the model, the specific effect of each variable on the commuting behavior departure time is obtained, and the choice of individual departure time is predicted by the model. The main contents of this paper are as follows: (1) the general distribution of commuting behavior departure time. Based on the questionnaire data, the survival function and risk function of commuting behavior were estimated by the nonparametric method of survival analysis. To explore the general distribution of commuting departure time. (2) the Cox risk model of commuting behavior departure time and the analysis of its influencing factors. The applicability of Cox proportional risk model for the study of commuting behavior departure time was discussed. The Cox risk model of commuting behavior departure time was established. After the possible factors were screened, the sex, age and occupation were determined. Whether to send students to school, travel distance, travel mode, public transportation service quality and individual motorized traffic service quality all have significant effects on commuting departure time. (3) based on the family characteristics of commuters, The Cox risk model is used to predict the departure time of commuting behavior. The results show that the model is more predictable and can accurately predict the departure time of commuting behavior. The research in this paper enriches the existing research on commuting behavior departure time at the individual level and can provide the theoretical basis for the formulation of traffic guidance measures and traffic management control measures.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491
【参考文献】
相关期刊论文 前10条
1 侯现耀;陈学武;曾隽;;公交出行信息条件下出行者通勤出发时间选择影响因素[J];东南大学学报(自然科学版);2016年04期
2 栾琨;傅忠宁;隽志才;;有限理性下个体出发时间选择行为研究[J];交通运输系统工程与信息;2016年01期
3 张智勇;郝晓云;王东;巩建;王达;;北京市信号交叉口行人过街忍耐时间研究[J];交通信息与安全;2015年04期
4 陈梓烽;柴彦威;;通勤时空弹性对居民通勤出发时间决策的影响——以北京上地—清河地区为例[J];城市发展研究;2014年12期
5 吴文静;罗清玉;贾洪飞;;基于竞争风险模型的居民活动-出行计划研究[J];交通运输系统工程与信息;2014年06期
6 宗芳;隽志才;贾广辉;;基于离散-连续选择模型的通勤出行时间预测[J];系统工程理论与实践;2013年10期
7 尚山山;钱大琳;;基于生存分析的小汽车通勤者出发时刻研究[J];武汉理工大学学报(交通科学与工程版);2013年05期
8 张春勤;姜桂艳;吴正言;;机动车出行者出发时间选择的影响因素[J];吉林大学学报(工学版);2013年03期
9 杨小宝;周映雪;;交通拥堵持续时间的非参数生存分析[J];北京交通大学学报;2013年02期
10 张波;隽志才;林徐勋;;基于累积前景理论的出发时间选择SDUO模型[J];管理工程学报;2013年01期
相关博士学位论文 前2条
1 环梅;基于生存分析的信号交叉口非机动车穿越行为研究[D];北京交通大学;2014年
2 李树生;生存模型的理论及应用研究[D];南开大学;2010年
相关硕士学位论文 前9条
1 蒋利霞;基于生存分析和离散选择模型的行人过街安全研究[D];重庆大学;2015年
2 李明;基于风险模型的城市居民购物出发时间分布规律分析[D];北京交通大学;2015年
3 徐奥林;基于出行者特性的出行行为研究[D];北京交通大学;2014年
4 樊海博;基于NestedLogit的小汽车通勤出行转移模型研究[D];北京交通大学;2014年
5 吉芳芳;小汽车通勤出行方式向公共交通转移模型研究[D];北京交通大学;2014年
6 林仁鑫;加速失效时间模型下失效原因缺失的竞争风险数据的统计推断方法[D];复旦大学;2013年
7 王彪;考虑主观不确定性的出行选择行为研究[D];大连理工大学;2013年
8 姜玲;城市交通出行时间波动性的价值评估研究[D];南京理工大学;2013年
9 张琳;基于多成本分析的出发时刻选择决策模型研究[D];哈尔滨工业大学;2011年
,本文编号:2399629
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2399629.html