基于数据挖掘技术的驾驶行为分析
[Abstract]:Automobile has become the most popular means of transportation, and the number of traffic accidents in China reaches to millions every year, resulting in huge casualties and property losses, so it is of great significance to study the prevention of traffic accidents. In the environment where vehicle design and road construction have been difficult to make a breakthrough in accident prevention, more and more attention has been paid to the study of driver's driving behavior. However, there is still a lack of unified quantitative indicators to describe driving behavior habits, and the research results of evaluating driving safety level by quantitative indicators are few and far between. Therefore, based on OBD (On-Board Diagnostics: vehicle Diagnostic system) technology, the driving behavior habits are analyzed from five dimensions: driving stroke, operation type, driving speed, driving acceleration and engine speed. The quantitative index of driving behavior is extracted by using the vehicle running data collected for a long time and the driving behavior habit has the characteristics of long-term stability and invariance. The data in this study are derived from the driving data of ordinary drivers collected by "excellent driving Smart Box" for more than 2 years, and the main driving regions of these drivers are in Chongqing area. The "superior driving smart box" obtains the driving data of the vehicle through the OBD interface that the vehicle generally has, and then connects with the smartphone through Bluetooth, displays the important data on the smartphone and passes the driving operation data to the server. Enables each driver's vehicle operation data to be kept without interruption. At present, most of the cars in the market use the international standard of OBD II, which makes the "superior driving intelligent box" can obtain the data of different manufacturers and different models of vehicles in real time through the OBD interface. With the development of OBD technology, the number of vehicle running data is increasing. In this paper, the vehicle running data related to driving behavior are extracted from five dimensions, and 57 indexes are obtained by transformation. The time series stability analysis method in financial field is introduced to test the stability of these 57 indexes. A total of 17 indexes satisfying stability were obtained, which were used as quantitative indicators of driving behavior. On the basis of the extracted quantitative index of driving behavior, the driver classification research is also carried out. The results show that the driver with different driving behavior characteristics can be distinguished by using the driving behavior quantification index to classify driver. This study provides a theoretical basis for the quantitative study of driving behavior and a new way of thinking and method for the study of accident tendency. The analytical data obtained by the OBD method is easier to obtain than the traditional experimental data, and the results of the analysis are more realistic and practical.
【学位授予单位】:第三军医大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.25
【参考文献】
相关期刊论文 前10条
1 张茜;杨佩钊;严慈磊;范起飞;;我国道路交通事故人因分析[J];汽车实用技术;2016年06期
2 刘萌;邹忠义;黄斐;;基于熵权AHP理论的驾驶倾向性辨识评价方法[J];公安海警学院学报;2016年01期
3 林滨;;K-Means聚类的多种距离计算方法的文本实验比较[J];福建工程学院学报;2016年01期
4 沈后功;周凯;;2015年全国机动车和驾驶人迅猛增长 新增汽车1781多万汽车保有量增长创历史新高[J];汽车与安全;2016年02期
5 杨松;;危险驾驶行为对道路交通流特性的影响分析[J];公路交通科技(应用技术版);2016年01期
6 姜军;陆建;;驾驶经验和气质类型对驾驶行为的影响分析[J];交通信息与安全;2015年03期
7 祁钰茜;吴超仲;高嵩;彭理群;;基于AHP和物元分析的愤怒驾驶状态辨识研究[J];交通信息与安全;2015年02期
8 肖将;秦雅琴;王圆圆;李海琼;;基于驾驶模拟实验的驾驶员气质与驾驶行为关系研究[J];人类工效学;2014年05期
9 任慧君;许涛;李响;;利用车载GPS轨迹数据实现公交车驾驶安全性分析[J];武汉大学学报(信息科学版);2014年06期
10 金会庆;张树林;赵艳林;姜良维;黄惠民;张国楚;路小波;;职业驾驶人不良驾驶行为特征及其影响因素分析[J];人类工效学;2013年04期
相关博士学位论文 前3条
1 曲婷;基于随机模型预测控制的驾驶员行为建模[D];吉林大学;2015年
2 咸化彩;次任务驾驶安全性评价指标及评价模型研究[D];吉林大学;2014年
3 秦洪懋;基于驾驶行为的车道偏离预警系统关键技术研究[D];江苏大学;2014年
相关硕士学位论文 前9条
1 张晓林;基于视觉的疲劳驾驶特征提取[D];兰州大学;2016年
2 翟海朋;营运车辆驾驶员驾驶行为与驾驶适宜性检测单项指标相关性研究[D];长安大学;2015年
3 卢凯旋;基于车载信息融合的驾驶行为分析[D];哈尔滨工业大学;2014年
4 李涛;营运车辆驾驶人适宜性检测综合指标与交通事故相关性研究[D];长安大学;2014年
5 伍小敏;营运车辆驾驶人适宜性检测单项指标与交通事故相关性研究[D];长安大学;2013年
6 应江婷;我国营运车辆驾驶人适宜性检测评价指标体系的研究[D];长安大学;2012年
7 李山虎;攻击性驾驶行为评价方法研究[D];长安大学;2011年
8 李新伟;营运车辆驾驶人驾驶适宜性检测评价指标的研究[D];长安大学;2011年
9 欧颖;驾驶员心理健康及其相关因素的分析[D];重庆医科大学;2010年
,本文编号:2410013
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2410013.html