孔李淮河大跨钢结构桥在整体顶推过程中的仿真及应力监测分析
[Abstract]:The application of integral thrust construction technology in long span continuous arch bridge is less, and the data can be consulted less. In addition, due to the continuous change of the boundary conditions of the main bridge structure, the structural system is also very complex and changeable during the jacking process of the long-span continuous composite arch bridge. Therefore, in order to ensure the safety and smooth progress of the whole thrust process, it is very important to monitor the stress of each component of the main bridge. Based on the whole pushing of the main bridge structure of Kongli Huaihe River Bridge, based on Midas Civil finite element software, this paper simulates the whole pushing construction process of the three-span continuous beam-arch composite system arch bridge used in the main bridge structure. Based on the simulation results, the relevant measurement points are arranged in the field, and the measured data are obtained. By comparing and analyzing the stress, the paper finds out the most disadvantageous stage of the main bridge structure in the course of three-wheeled integral pushing construction, the maximum position and magnitude of the corresponding section stress, and the law of the stress variation of each structural member. It provides more references for the whole pushing of the same type of beam and arch composite system arch bridge in the future, and provides new ideas and directions for the research of the same type bridge's integral pushing construction. The main work of this paper is as follows: first, the construction scheme and integral pushing technology of the main bridge structure of Kongli Huaihe River Bridge are studied. The structure is composed of three main systems: arch system, rigid tie bar system (steel box girder), flexible tie bar system (external prestressing force) system, and suspender system. The structure is composed of three parts: arch rib system, rigid tie bar (steel box girder) system, flexible tie bar system (external prestressing force) system. This structure is corresponding to three-span three-wheel thrust. Secondly, the finite element model of the main bridge structure is established based on the Midas Civil finite element software, according to the integral thrust construction scheme adopted in the main bridge structure, according to the structure layout form of the main bridge structure. At the same time, the division of the construction stage of the whole pushing process is defined. Thirdly, the simulation results are extracted from the structure thrust scheme. The stress envelope diagram of the main components of the main bridge structure is extracted during the three-wheeled thrust process, and the most unfavorable section position of each member, the corresponding pushing stage and the most unfavorable section stress value are found. Fourthly, according to the simulation results, the strain sensors are arranged in the field and the measured results are collected. By monitoring the whole uninterrupted stress (strain) of the whole thrust construction process, the stress control of the whole thrust construction of the main bridge is realized, and the actual stress situation of the main bridge structure in each construction stage during the whole jacking construction process is monitored. Fifth, the simulation and measured stress values are compared and analyzed. By comparing the measured stresses on the unfavorable cross sections of the first, second and third wheeled thrust structures with the simulation results, it is found that the stress curves of the two structures are in good agreement with each other. The stress state of the structure in the process of pushing basically accords with the design requirements, and the Midas Civil finite element calculation model can well simulate the mechanical behavior of the members in the process of pushing.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U446;U445
【参考文献】
相关期刊论文 前10条
1 谭钧;;步履顶推施工过程中钢槽梁局部受力分析[J];重庆科技学院学报(自然科学版);2014年05期
2 丁广翔;;公路桥梁顶推法施工技术研究[J];交通建设与管理;2013年07期
3 刘继兰;;刚架拱桥加固机理研究及加固结果分析[J];中国高新技术企业;2011年07期
4 史文杰;曾明根;苏庆田;王巍;;九堡大桥主桥受力特性分析[J];桥梁建设;2010年06期
5 李兴高;;既有地铁线路变形控制标准研究[J];铁道建筑;2010年04期
6 陈永宏;;平胜大桥自锚式悬索桥钢箱梁顶推施工[J];桥梁建设;2006年S1期
7 邵旭东,陈爱军,李立峰;长沙市洪山大桥的创新设计[J];中外公路;2005年02期
8 田仲初,陈得良,颜东煌,陈政清;钢箱提篮拱桥施工控制的关键技术研究[J];中国公路学报;2004年03期
9 龚志刚 ,刘海燕;世界最高墩桥——法国米约多塔斜拉桥[J];世界桥梁;2004年02期
10 涂满明;洪山庙大桥钢梁顶推施工技术[J];铁道建筑;2003年06期
相关博士学位论文 前1条
1 王福军;冲击接触问题有限元法并行计算及其工程应用[D];清华大学;2000年
相关硕士学位论文 前10条
1 王超超;中外规范部分条文的差异性研究[D];兰州交通大学;2015年
2 丁志全;曲线钢箱梁桥顶推施工过程受力分析及成桥活载作用下的受力研究[D];重庆交通大学;2014年
3 华启迪;基于顶推施工钢箱梁技术控制研究[D];苏州科技学院;2014年
4 刘双意;顶推施工法在波形钢腹板组合箱梁中的应用研究[D];湖南大学;2014年
5 张培炎;桥梁顶推施工过程受力分析及关键问题研究[D];西南交通大学;2014年
6 罗大波;大件运输条件下盖板涵结构稳定性的应用程序研究[D];重庆交通大学;2013年
7 高永进;某斜拉桥线形施工控制系统研究[D];华中科技大学;2012年
8 王沁;混凝土斜连续梁桥顶推仿真计算及关键临时构件力学性能分析[D];长沙理工大学;2011年
9 罗育明;钢管混凝土拱桥施工控制研究[D];中南林业科技大学;2011年
10 刘小光;钢箱梁顶推施工仿真计算与受力分析[D];长沙理工大学;2011年
,本文编号:2417702
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2417702.html