高速公路交通运行状态判别方法研究
[Abstract]:With the rapid growth of economy, the situation of urban traffic operation is becoming more and more severe. Meanwhile, the expressway has become another problem that needs to be alleviated from the original solution to restrict the development of economic transportation. With the increase of the number of cars in our country, the traffic congestion on many expressways in our country has also been increased, and the whole highway network has rapidly entered the "congestion era". In view of the above phenomenon, this paper puts forward the expressway running state system from the meaning of the traffic running state, and starts from the concrete analysis of the expressway running state system based on the environment of the expressway, and then establishes the running state system. This paper discusses in detail from design principle to index selection, from system construction to quantification of state index. Based on the analysis of traffic state index system, this paper establishes the evaluation criteria of traffic congestion determined by interval traffic parameters and traffic congestion evaluation standards determined by location traffic parameters. This paper presents an algorithm for judging the traffic running state in this special traffic environment in expressway. The algorithm combines with the requirements of traffic congestion evaluation standard, and the judgment model is composed of location parameters, interval parameters and data fusion. The methods are elaborated in detail, and the traffic condition is analyzed reliably, the traffic condition is monitored reasonably, the early warning is analyzed and implemented, and the purpose of traffic management and service is realized. At the same time, this paper analyzes the important role of traffic emergency detection, analyzes the basic principle of expressway traffic incident detection, discusses the influencing factors of expressway traffic incident, and summarizes the classical algorithm of automatic traffic event detection. Based on support vector machine (SVM), a highway traffic emergency identification algorithm is proposed, and then the optimal value of support vector machine parameters is found, and an improved particle swarm optimization algorithm is introduced. An improved particle swarm optimization (PSO)-support vector machine (SVM) based expressway traffic emergency discrimination model is proposed. The performance of the proposed algorithm is verified by the experiments of parameter optimization based on network search, parameter optimization based on basic particle swarm optimization and parameter optimization based on improved particle swarm optimization.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U491
【参考文献】
相关期刊论文 前10条
1 裴玉龙,盖春英;公路网络运营可靠度研究[J];公路交通科技;2005年05期
2 王力;范耀祖;张海;;基于探测车技术和多级模糊模式识别的道路交通状态评价方法[J];公路交通科技;2007年09期
3 杨志勇;马红伟;陈小平;;基于模糊逻辑的高速公路事件检测算法研究[J];重庆交通大学学报(自然科学版);2013年06期
4 姚智胜;邵春福;;道路交通状态预测研究[J];哈尔滨工业大学学报;2009年04期
5 戢晓峰;刘澜;何增辉;;基于模糊推理的区域路网交通状态分析方法[J];交通运输工程与信息学报;2009年03期
6 袁月明;关伟;吴建平;;基于视频检测技术的城市快速路交通状态分析研究[J];交通与计算机;2008年04期
7 丛浩哲;方守恩;王俊骅;;交通事件持续时间影响因素分析及其回归模型[J];交通信息与安全;2010年03期
8 康国祥;方守恩;;Cox Regression模型在交通事件持续时间研究中的应用[J];交通信息与安全;2011年02期
9 史忠科;高速公路交通状态的联合估计方法[J];控制与决策;2003年06期
10 郑黎黎;丁同强;范海燕;杨兆升;孙健;;高速公路交通事件影响范围的模糊预测[J];数学的实践与认识;2009年01期
相关博士学位论文 前4条
1 王新颖;基于网格的短时交通状态预测研究[D];吉林大学;2010年
2 张扬;城市路网交通预测模型研究及应用[D];上海交通大学;2009年
3 李琦;基于多源数据的交通状态监测与预测方法研究[D];吉林大学;2013年
4 孙晓亮;城市道路交通状态评价和预测方法及应用研究[D];北京交通大学;2013年
本文编号:2421294
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2421294.html