基于规划求解的组合预测模型在道路客运量预测中的应用
[Abstract]:In order to forecast the future development trend of road passenger traffic, a more accurate forecasting model is established. Based on the analysis of the main forecasting methods, a combined forecasting model based on programming solution is proposed. Based on the grey model, univariate regression and exponential smoothing three forecasting methods, the objective function is established, which is the sum of the absolute value of the difference between the weighted sum of the predicted value over the years and the difference between the actual value and the sum of the absolute value as the objective function. The programming solution model is based on the sum of the non-negative weight coefficient and the weight coefficient 1. In the process of weight calculation, the value of objective function decreases gradually with the increase of iteration times. By observing the change value of objective function value, when the change value of objective function appears inflection point, the method of determining the iteration number of combined weight is defined. Based on the data of "Baicheng and 100 stations" which is more representative, a combined forecast model of passenger volume for road passenger transport is established. In the process of planning and solving, the function of "programming solving" in Excel is used. The experimental results show that with the increase of the number of iterations, the change value of the objective function decreases gradually. When the number of iterations is 7, the inflection point of the change value of the objective function appears, and the number of iterations is determined. The absolute errors of the three traditional prediction methods are 1.26,0.48 and 2.98, respectively. The absolute error of the combined forecasting model based on programming solution is 0.12. the prediction precision is higher and the error is smaller, and the combined forecasting model is easy to operate. The uncertainty of single model prediction can be reduced, and the future road passenger traffic can be predicted according to the above model.
【作者单位】: 交通运输部科学研究院;
【基金】:交通运输部建设科技项目(2015 318 J36 110) 交通运输战略规划政策研究项目(2016-1-4) 中央级公益性科研院所基本科研业务费项目(2016 6110)
【分类号】:U492.413
【相似文献】
相关期刊论文 前10条
1 张欣;;组合预测模型在上海内河港口吞吐量预测中的应用[J];水运工程;2007年04期
2 张维朋;;组合预测模型在宁波港口集装箱吞吐量的预测研究[J];科技通报;2012年05期
3 杨新仓;李枫;;组合预测模型在公路客运量预测中的应用[J];山西建筑;2012年04期
4 郁小锋;余静;;组合预测模型在港口物流量预测中的应用[J];中国水运(下半月);2008年06期
5 林安东;基于误差绝对值之加权和最小的组合预测模型及其应用[J];上海海运学院学报;2000年03期
6 孙慧慧;;组合预测模型在北京市汽车拥有量预测中的应用[J];淮阴师范学院学报(自然科学版);2013年04期
7 童明荣;薛恒新;林琳;;基于最优组合预测模型的港口集装箱吞吐量预测[J];技术经济;2006年12期
8 张凯;卢邹颖;;短时车流量组合预测模型[J];南京信息工程大学学报(自然科学版);2013年05期
9 刘启文;林钢;林吾思;;基于MATLAB的组合模型在港口吞吐量预测中的应用[J];水运工程;2008年11期
10 张云康;张晓宇;;组合预测模型在宁波港集装箱吞吐量预测中的应用[J];中国水运(下半月);2008年01期
相关会议论文 前1条
1 谢正文;孔凡玉;胡毅夫;;基于熵权的沉降组合预测模型及应用[A];第一届中国水利水电岩土力学与工程学术讨论会论文集(下册)[C];2006年
相关博士学位论文 前2条
1 于志恒;基于智能理论的交通流量组合预测模型研究[D];东北师范大学;2016年
2 赵川;重载交通对高速公路桥梁的疲劳影响研究[D];河北工业大学;2015年
相关硕士学位论文 前2条
1 王超;组合预测模型在集装箱生成量预测中的应用研究[D];合肥工业大学;2009年
2 陈珂;传感器网络技术在隧道变形监测中的应用研究[D];西南交通大学;2013年
,本文编号:2437528
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2437528.html