智能停车管理与引导系统研究
[Abstract]:With the development of China's economy and the acceleration of urbanization, the transportation industry has developed vigorously, and the number of cars has been increased year by year. China has entered the era of private cars. Corresponding to the growth rate of 15% / 20% vehicle ownership per year, the urban road traffic pressure is increasing. It has become an urgent task to improve the traffic conditions and utilization efficiency of the facilities in the city, and even an important means to guarantee the development of the city economy. In the face of the contradiction between the shortage of parking lot and the low efficiency of parking and the huge demand for parking, the contradiction between supply and demand should be alleviated by improving the operation efficiency of parking lot, because the quantity of parking facilities is limited in the short term due to the shortage of urban land use. At present, the main reasons for the low efficiency of parking are: the access to parking information is low, and there is no clear guidance for entering vehicles, so it is necessary to develop a set of effective and universal parking management and guidance system. Based on the mature sensor detection technology and network communication technology, this paper focuses on the optimization of parking information acquisition and parking guidance flow. (1) the algorithm of parking state information acquisition and parking selection is studied. First, based on the geomagnetic sensor detection data, the corresponding data processing method and vehicle status discrimination method are proposed. Secondly, according to the result of vehicle status discrimination, a parking characteristic parameter acquisition algorithm for different parking lot size layout is put forward, which realizes the effective acquisition of parking lot management information and parking state information. Finally, the optimal parking selection algorithm and optimization scheme based on grey entropy model are put forward by analyzing the parking flow and the influencing factors of parking choice under different guiding modes. (2) the development and realization of intelligent parking management and guidance system are studied. Firstly, by analyzing the functional requirements and the corresponding business processes of the intelligent parking management system, the emphasis of the development process is defined, and the feasibility of the implementation of the system is demonstrated. Secondly, through the analysis of the data transmission level of the system, the framework of the network topology of the system is completed. Finally, under the corresponding development environment, according to the parking lot model example, the corresponding database construction and the final visual implementation of the guide interface are completed.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.7
【参考文献】
相关期刊论文 前10条
1 秦昌辉;吴晓梅;张冬梅;;基于地磁传感器的车位检测系统设计[J];科技创新与应用;2016年16期
2 李伟;余森;王伟;;基于时间最短路径的停车场车位引导算法[J];自动化仪表;2015年08期
3 刘源;谢海涛;刘礼勇;;停车业务现状及需求研究[J];物联网技术;2014年12期
4 岳学军;刘永鑫;王叶夫;陈树荣;林达;全东平;燕英伟;;基于ZigBee与地磁传感技术的停车诱导系统[J];计算机应用;2014年03期
5 段世霞;曹飞;郜红虎;;基于灰熵模型的大型工程项目供应商评价研究[J];物流技术;2014年01期
6 袁静;;解决最优停车位问题的改进蚁群算法[J];计算机与数字工程;2013年03期
7 梁娇娇;马晓旦;何继平;;典型社会公共停车场现状调查与分析——以张家界中心城区为例[J];交通与运输(学术版);2012年01期
8 高敬红;杨宜民;;道路交通车辆检测技术及发展综述[J];公路交通技术;2012年01期
9 季彦婕;王炜;邓卫;;停车场内部泊车行为特性分析及最优泊位选择模型[J];东南大学学报(自然科学版);2009年02期
10 陈茜;裘红妹;林群;李锋;关志超;赵一斌;张昕;蔡五三;杜勇;陈智宏;汪祖云;乐娟;谢振东;张孜;田夫;陶云;卢一夫;刘延东;周飞雄;陈观宙;;全国智能交通系统示范城市建设示例[J];城市交通;2008年02期
相关博士学位论文 前2条
1 田寅;城市交通智能感知与传感器网络技术研究[D];北京交通大学;2015年
2 李海舰;道路交通信息获取多参量感知与传感器网络优化[D];北京交通大学;2014年
相关硕士学位论文 前10条
1 汤俊青;高速铁路基础设施检测线性无线传感器网络研究[D];北京交通大学;2016年
2 周思浩;基于无线传感网络的停车场内智能引导系统[D];长安大学;2015年
3 周际;校园停车场管理平台的设计[D];华中科技大学;2015年
4 戴艳芬;基于路网容量的城市中心区停车场合理规模研究[D];重庆交通大学;2014年
5 许静;停车场智能管理系统设计[D];南昌大学;2013年
6 耿寸召;基于ZigBee技术的停车场车位检测系统设计[D];内蒙古大学;2013年
7 吴若伟;大型停车场智能泊车引导关键技术研究与系统开发[D];南京航空航天大学;2013年
8 宋红颖;城市轨道交通客流诱导系统的研究与实现[D];大连海事大学;2012年
9 刘媛媛;大型停车场内车位诱导系统研究[D];长安大学;2010年
10 唐辉;基于RFID的智能停车场管理系统关键技术研究[D];武汉理工大学;2008年
,本文编号:2438159
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2438159.html