钢板-橡胶混凝土复合覆层应用于桥墩防撞的研究
[Abstract]:With the development of economy and the progress of science and technology, beam bridge has been used more and more widely. As the substructure of the bridge, the pier not only bears the weight of the structure and the load of the vehicle, but also bears the risk of the impact of the vehicle at all times, therefore, the bridge pier is the substructure of the bridge. It is of great significance to study its response under impact load and anti-collision countermeasures. In this paper, Waveform steel plate rubber concrete, flat steel plate rubber concrete and rubber concrete are used as anti-collision layer of bridge pier. The impact force and dynamic response of the model piers of different cladding types are tested by hammer-impact method and pendulum test. Furthermore, the actual anti-collision effect of three types of coating is demonstrated. In addition, the modal strain energy principle and the finite element software ABAQUS/Explicit are used to calculate the additional damping ratio of the first-order vibration modes provided by three different types of layers for the model pier, and the finite element software ABAQUS/Explicit is used to calculate the additional damping ratio of the first-order vibration modes. The feasibility of the finite element software to simulate the collision problem is verified. Based on the above research contents, the following conclusions can be drawn: (1) for the corrugated steel sheet rubber concrete model pier, the flat steel plate rubber concrete model pier and the rubber concrete clad model pier, with the increase of pendulum height, (2) when the falling height of pendulum is the same, the top displacement response of rubber-concrete covered pier is the largest, followed by flat steel plate rubber-concrete covered pier. The displacement response of the pier with corrugated steel plate rubber-concrete is the smallest. (3) the peak impact force of the model pier with different types of cladding is different, because of the local deformation of corrugated steel plate rubber-concrete piers, the effect of wave-shaped steel plate rubber-concrete cladding piers is the least. The impact force can be effectively prevented from growing too fast. (4) Waveform steel plate rubber concrete coating and steel plate rubber concrete coating are controlled by the local plastic deformation energy dissipation of the outer steel plate and the energy absorption of the inner layer rubber concrete to control the strain of the pier body. When the deformation of the outer plate is not stable, the local deformation energy dissipation of the steel plate is dominant, but when the local deformation of the outer plate is fully developed, the energy dissipation of the local deformation of the steel plate is dominant. (5) the maximum strain, displacement of pier top, impact point and acceleration of pier top obtained by finite element simulation are in agreement with the trend of test value, and the numerical value is slightly larger. It can be considered that the finite element software ABAQUS used in this paper is feasible to calculate the dynamic response of piers under impact load, and it is considered from the point of view of ensuring the safety of pier structure. The finite element calculation results are conservative. (6) for corrugated steel plate rubber-concrete coating and steel plate rubber-concrete coating, steel plate can not only serve as formwork, but also provide greater lateral stiffness. Especially for the corrugated rubber concrete coating, the vertical ripple increases the mechanical bite force of the inner rubber concrete and the outer steel plate, and the vertical wave plays the role of stiffening rib, and the lateral resistance is better, therefore, the vertical ripple increases the mechanical bite force of the inner rubber concrete and the outer steel plate, so the lateral resistance is better. The combination of corrugated steel plate or flat steel plate with rubber concrete can be used as a composite anti-collision protective layer for bridge piers, and the satisfactory construction and mechanical properties can be obtained.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U444;U443.26
【参考文献】
相关期刊论文 前10条
1 赵秋红;李楠;孙军浩;;波纹钢板剪力墙结构的抗侧性能分析[J];天津大学学报(自然科学与工程技术版);2016年S1期
2 孙宝;孙大刚;李占龙;燕碧娟;王军;;粘弹结构模态损耗因子分析的修正模态应变能法[J];兵工学报;2016年01期
3 田力;冯振宁;;预应力箱型梁桥遭受超高车辆在不同位置撞击下的动态响应[J];土木工程与管理学报;2016年01期
4 顾承杰;;桥梁防撞设计的常用方法探讨[J];企业技术开发;2015年27期
5 李彰;;掺橡胶粉的路面水泥混凝土微细观结构改性机理研究[J];石家庄铁道大学学报(自然科学版);2015年03期
6 张震;连永祥;;我国废橡胶利用现状和发展趋势浅谈[J];科技风;2015年05期
7 王可良;吕兴友;刘延江;刘玲;;橡胶集料混凝土的极限拉伸变形试验[J];南水北调与水利科技;2014年06期
8 张志国;禚一;;某桥墩抗撞、防撞措施设计及分析[J];铁道工程学报;2013年12期
9 朱亚迪;卢文良;;小车墩柱撞击力模型试验研究[J];振动与冲击;2013年21期
10 李盛勇;聂建国;刘付钧;胡红松;樊健生;邵大成;喻德明;;外包多腔钢板-混凝土组合剪力墙抗震性能试验研究[J];土木工程学报;2013年10期
相关会议论文 前3条
1 李浩然;薛凯;朱涵;;橡胶混凝土悬臂梁动力和耗能性能研究[A];第十四届全国现代结构工程学术研讨会论文集[C];2014年
2 张炎圣;何水涛;陆新征;卢啸;;不同车型超高车辆撞击桥梁上部结构荷载计算[A];第七届全国工程结构安全防护学术会议论文集[C];2009年
3 袁小钦;张素侠;刘习军;;桥梁减振技术的发展现状和趋势[A];第十三届全国非线性振动暨第十届全国非线性动力学和运动稳定性学术会议摘要集[C];2011年
相关博士学位论文 前2条
1 崔X鹏;汽车撞击荷载及其作用下高速列车与桥梁系统动力响应与列车运行安全研究[D];北京交通大学;2015年
2 杨林虎;橡胶集料混凝土的微观解析及其结构理论的探索研究[D];天津大学;2010年
相关硕士学位论文 前10条
1 张敏强;橡胶混凝土力学性能及其应用于桥墩防撞的试验研究[D];北京交通大学;2016年
2 陈玉良;橡胶混凝土力学性能研究[D];湖北工业大学;2015年
3 李伟龙;橡胶集料混凝土耗能性能的试验研究及其在桥墩防撞中的应用[D];北京交通大学;2015年
4 李超群;汽车撞击作用下桥墩的受力机理及动力响应研究[D];北方工业大学;2014年
5 徐林枫;车辆撞击下桥墩的撞击力和墩身应变研究[D];北京交通大学;2014年
6 刘姗;车辆撞击作用下的桥梁动力响应分析[D];昆明理工大学;2013年
7 刘美铭;桥梁事故分析[D];西南交通大学;2013年
8 张秉辉;桥梁减振阻尼材料的性能实验及分析[D];石家庄铁道大学;2012年
9 陈贵炫;橡胶混凝土的抗冲击性能研究[D];广东工业大学;2011年
10 周延朝;波形梁护栏碰撞仿真实验研究[D];重庆交通大学;2009年
,本文编号:2466883
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2466883.html