压路机液压系统故障诊断研究
[Abstract]:Vibratory roller, as an important engineering compaction machine, is widely used in road engineering, airport port and municipal construction and other engineering fields. In the large construction site, it is often the cooperative operation of the construction machinery group. If the roller fails, the machinery and equipment working with it will be forced to stop work, which will affect the progress of the project and delay the construction period and even bring great economic losses. Hydraulic system is the main system of vibratory roller, its working environment is often bad, the working condition is relatively complex, and the probability of failure is high. The research work on fault diagnosis of hydraulic system of vibratory roller is helpful to eliminate the fault of hydraulic system in time, give full play to the maximum efficiency of vibratory roller, and ensure the quality of the project and speed up the progress of the project. It is of great economic and practical significance to improve economic efficiency. In this paper, the working principle of full hydraulic vibratory roller and the basic faults and troubleshooting methods of hydraulic system are analyzed. A principal component analysis (PCA) method is proposed to extract fault features, and then fuzzy reasoning and fuzzy neural network are used to recognize the fault pattern. The simulation results show that the fuzzy neural network has better robustness and stability to fault recognition. In this paper, the traditional principal component analysis method is improved, and the axial piston pump is taken as an example to reduce the redundancy, and to ensure that the data after dimension reduction still carry enough original sample data information. Then, taking the data after dimension reduction by principal component analysis as samples, fuzzy reasoning and fuzzy neural network are used to identify the faults, and through simulation analysis and comparison, A fault diagnosis model of hydraulic system of roller based on principal component analysis and fuzzy neural network is established. The simulation results show that the model has good fault tolerance and robustness for hydraulic system fault diagnosis of roller, and avoids the disadvantage that the standard neural network is easy to fall into local convergence. The model can be widely used in fault diagnosis of hydraulic system of roller.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U415.521
【参考文献】
相关期刊论文 前10条
1 张前;胡水英;张青哲;;起升机构液压系统模糊神经网络故障诊断[J];流体传动与控制;2015年04期
2 蒋林;;振动压路机振动系统故障分析[J];科技资讯;2015年07期
3 李红彩;;2014-2015年压路机市场分析[J];建筑机械;2015年04期
4 毛洪美;;基于人工智能的液压传动系统故障诊断技术的研究与探讨[J];科技风;2014年24期
5 许葆华;韩东;杜明;;基于小波-平滑能量算子解调的液压泵故障分析[J];液压与气动;2014年08期
6 李玉奎;王志宏;郭红娟;;现代压路机技术发展趋势[J];科技与企业;2014年03期
7 闫玉民;白岩磊;;国内外压路机的现状及分析[J];中国建设信息;2013年14期
8 李程辉;;浅谈神经网络在机械工程中的应用[J];河南科技;2013年09期
9 龚志飞;郭迎清;;基于主元分析法的航空发动机传感器故障诊断研究[J];计算机测量与控制;2012年08期
10 任伟建;王喜刚;王思宇;;基于模糊神经网络的抽油机故障诊断方法[J];自动化技术与应用;2012年04期
相关博士学位论文 前4条
1 王振华;描述系统的故障诊断观测器设计[D];哈尔滨工业大学;2013年
2 曾庆虎;机械动力传动系统关键部件故障预测技术研究[D];国防科学技术大学;2010年
3 张可;基于征兆分析的多故障智能诊断方法的研究和应用[D];重庆大学;2010年
4 贺湘宇;挖掘机液压系统故障诊断方法研究[D];中南大学;2008年
相关硕士学位论文 前10条
1 刘蒙蒙;振动压路机智能化的关键技术研究[D];长安大学;2014年
2 杨蕊;基于定量知识的分层有向图故障诊断方法及其应用[D];太原理工大学;2014年
3 盛博;基于图论的数控机床多故障诊断方法研究[D];华中科技大学;2014年
4 谢莎莎;基于不动点定理的神经网络稳定性分析[D];集美大学;2014年
5 唐明;振动压路机无级调幅调频实现的研究[D];青岛科技大学;2014年
6 刘伟宏;声发射信号分析中的粒子滤波理论及其算法与实现[D];长沙理工大学;2014年
7 唐铭;基于EMD及神经网络的柱塞泵故障诊断的方法研究[D];天津大学;2013年
8 张洪瑾;基于模糊神经网络的掘进机液压系统故障诊断研究[D];南京理工大学;2013年
9 杨艳霞;基于LabVIEW的挖掘机液压系统状态检测系统的设计研究[D];河南科技大学;2012年
10 韩伟;混凝土输送设备液压系统的建模与故障分析[D];东北大学;2011年
,本文编号:2478062
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2478062.html