基于手机打车软件使用的驾驶分心行为研究
[Abstract]:With the rapid development of road transportation, the number of motor vehicles in various countries is increasing rapidly, and the number of road traffic accidents is increasing day by day. However, 90% of road traffic accidents are related to driver factors, in which driving distraction is often the main cause of traffic accidents. In recent years, the number of people using ride-hailing software has increased rapidly, and the distractions of driving software are becoming more and more common, and the driving safety problems caused by this phenomenon have also attracted much attention. Therefore, this paper studies the driving distraction behavior induced by mobile phone hailing software in driving, and establishes the driving distraction detection model, which is of great significance to improve the road traffic safety and reduce the frequency of traffic accidents. This paper first introduces the relationship between driving safety and driving distraction behavior, and expounds that driving distraction behavior is an important cause of traffic accidents and driving safety problems. This paper systematically combs the characteristics of the use of mobile phone ride-hailing software, based on the regulations of the people's Republic of China on the implementation of the Road Traffic Safety Law and other laws, combined with the actual situation of the driving simulator in our school. Four kinds of distractions studied in this paper are screened out: Bluetooth conversation, talking to passengers, viewing information, information input, and the location of mobile phone bracket is the dashboard. Then, the driving simulation experiment based on mobile phone ride hailing software is completed on the large driving simulator developed by Southwest Jiaotong University. The experimental data are analyzed. The results show that there are throttle opening, longitudinal velocity, longitudinal acceleration, transverse acceleration and steering wheel angle in the conventional scene. The standard deviation of the six data of steering wheel angular speed showed significant difference between normal driving and four types of distracted driving, and the individual difference of driver had no significant effect on the results of the six indexes. In the unconventional scene, when the driver is distracted, his response to dangerous stimuli increases significantly, and the individual difference of the driver also has a significant impact on the response time results. The change of driver's reaction time will directly lead to the change of collision avoidance mode, but the compensation behavior of changing collision avoidance mode does not reduce the traffic accident rate, and the accident rate of driver when driving distraction operation is significantly increased. Finally, the driving state is divided into three categories, namely, normal driving state, cognitive distracted driving state and visual distracted driving state. Based on the difference analysis results of vehicle horizontal and longitudinal control indexes, the parameter set of driving distraction detection is constructed. Based on the theory of support vector machine (SVM), a driving distraction detection model is built. Then, the training sample set and the test sample set are randomly selected to train and verify the model. The results show that the average correct detection rate of the model for normal driving state, cognitive distracted driving state and visual distracted driving state is high. It was 82.5%, 80% and 92.5% respectively. The probability of misjudging both visual distracted driving state and cognitive distracted driving state to normal driving state is less than 8%. The overall detection effect of the model is good and can be used for driving distraction detection.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.254
【相似文献】
相关期刊论文 前10条
1 郑亮;马寿峰;贾宁;;基于驾驶员行为的元胞自动机模型研究[J];物理学报;2010年07期
2 汤雅杰;;基于多源信息刺激下的驾驶员行为研究[J];信息系统工程;2017年07期
3 李刚;李高超;;驾驶员行为意图及特性辨识研究综述[J];河北科技大学学报;2017年04期
4 Gwen Moran;桂曙光;;“更安全”的投资[J];创业邦;2010年06期
5 胡满江;边有钢;许庆;徐彪;丁洁云;李克强;;自适应驾驶员行为特征的车道偏离防范系统[J];汽车工程;2017年10期
6 李之红;;基于实车眼动实验的驾驶员注视行为建模分析[J];科学技术与工程;2018年11期
7 张磊;王建强;杨馥瑞;李克强;;驾驶员行为模式的因子分析和模糊聚类[J];交通运输工程学报;2009年05期
8 贾天丽;魏宝举;王卓;;交通信息对驾驶员行为的影响[J];中国市场;2010年23期
9 何存道;驾驶事故中人的因素——有关研究方法和问题的综述[J];心理科学通讯;1985年01期
10 陈雪梅;魏中华;高利;;紧急情况下驾驶员行为研究[J];北京工业大学学报;2007年05期
相关会议论文 前10条
1 周孝吉;郑玲;;基于驾驶模拟器的驾驶员特性研究[A];西南汽车信息(2018年第2期 总第383期)[C];2018年
2 孟影;戴家隽;冷英;;高速公路旁广告牌不同密集程度对驾驶行为的影响[A];第八次全国心理卫生学术大会论文汇编[C];2015年
3 刘方涛;陈定方;蒋云;;分布式虚拟现实技术在驾驶模拟器中的应用[A];湖北省机械工程学会机械设计与传动专业委员会第十五届学术年会论文集(一)[C];2007年
4 钱雪军;郎诚廉;申朝旭;;半实物机车驾驶模拟器研究[A];1998年上海市系统仿真学会学术年会论文专辑[C];1998年
5 李勇;谭红英;刘丹平;;基于多传感器信息融合的客车不安全驾驶行为智能分析[A];2012中国信息经济学年会会议论文集[C];2012年
6 苑盛成;刘奕;王刚桥;刘艺;张辉;;基于多主体的交通疏散仿真驾驶行为元模型架构研究[A];第26届中国控制与决策会议论文集[C];2014年
7 丁靖艳;郑全全;;关于侵犯驾驶行为的若干问题[A];中国人类工效学学会第六次学术交流会论文摘要汇编[C];2003年
8 张翔;何汉武;胡兆勇;王鹏;;虚拟交通环境下自主汽车智能驾驶行为研究[A];第十五届全国图象图形学学术会议论文集[C];2010年
9 冀杰;彭和;迟文俊;唐梦柔;;基于危险势能场的车辆避障驾驶行为决策分析[A];2015中国汽车工程学会年会论文集(Volume2)[C];2015年
10 任晓明;薛青;于希涛;;基于Agent的驾驶行为建模研究[A];'2010系统仿真技术及其应用学术会议论文集[C];2010年
相关重要报纸文章 前10条
1 烽火科技集团旗下长江智联;长江智联推出基于AI的DSM系统[N];通信产业报;2018年
2 本报记者 杨忠阳;汽车安全驾驶模拟器市场潜力大[N];经济日报;2011年
3 记者 李韬 通讯员 魏伟;宁波:驾驶模拟器里体验“上路开车”[N];中国交通报;2010年
4 李江涛、陈捷;驾驶模拟器为学车者创造真实感觉[N];人民日报;2004年
5 实习生 张维欣 本报记者 肖舒楠;63.1%的人期待加大惩处违规驾驶行为[N];中国青年报;2012年
6 本报记者 殷泓;交通文明,没有旁观者[N];光明日报;2016年
7 本报记者 简工博;“最严交规”今实施[N];解放日报;2017年
8 记者 吴艺;上海新版“交规”明日施行 执法细节有“说法”[N];人民公安报·交通安全周刊;2017年
9 本报记者 刘\,
本文编号:2486715
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2486715.html