当前位置:主页 > 科技论文 > 路桥论文 >

探地雷达目标识别方法及其在隧道衬砌检测中的应用研究

发布时间:2019-06-22 12:23
【摘要】:随着我国高速公路干线网的不断完善和发展,公路隧道的规模与数量也在不断增长。为了避免隧道开挖过程中及建成后的运营阶段发生事故而影响到人们生命财产的安全,需要运用合适的物探工具对隧道衬砌进行质量检测。探地雷达以其快速、高效、高分辨率及无损性等优点而受到隧道工作者的青睐。对于衬砌检测中出现的衬砌脱空、不密实体、空洞充水三种典型病害,可归类于形状、大小各异的空洞中填充了不同物质。本文通过使用探地雷达对物理模型进行探测获取试验数据,研究、建立空洞不同填充物质的分类识别方法,进而将此方法运用于隧道衬砌检测的病害分类识别中,主要研究内容如下:(1)通过物理模型试验分别获取空洞填充干沙、碎石、泥浆、水等物质相应的初始雷达数据,并运用本文总结的探地雷达数据预处理流程对其进行处理;从而进一步总结分析隧道衬砌检测中常见的衬砌脱空、不密实体、空洞积水三种病害典型雷达图像。(2)介绍了探地雷达振幅、频谱、相干性三种属性提取技术,结合雷达属性的物理意义,选取均方根振幅、平均波峰振幅、时域平均能量、相似系数及-3dB带宽平均相位五种雷达属性作为探地雷达目标分类识别的特征参数。(3)通过建立空洞不同填充物的高斯过程机器学习二元分类(GPC)模型,以均方根振幅、平均波峰振幅、时域平均能量、相似系数及-3dB带宽平均相位五种雷达属性作为矢量输入,成功识别出物理模型各空洞中分别填充空气、碎石、泥浆和水时四种物质,并给出相应预测概率。(4)将经物理模型试验验证后的GPC预测模型运用到岑溪大隧道衬砌检测实际工程中,成功对脱空、不密实体、空洞充水三种衬砌病害进行分类识别。说明本文所提出的探地雷达隧道衬砌检测高斯预测模型是可行的,有很好的应用前景。
[Abstract]:With the continuous improvement and development of highway trunk network in China, the scale and number of highway tunnels are also increasing. In order to avoid accidents in the process of tunnel excavation and after completion and affect the safety of people's lives and property, it is necessary to use appropriate geophysical tools to detect the quality of tunnel lining. Ground penetrating radar (GPR) is favored by tunnel workers because of its advantages of fast, high efficiency, high resolution and no damage. For the three typical diseases of lining emptiness, indense solid and empty water filling in lining detection, they can be classified into voids of different sizes and shapes and filled with different substances. In this paper, the experimental data are obtained by using ground penetrating radar (GPR) to detect the physical model, and the classification and identification method of different filling materials of voids is established, and then this method is applied to the disease classification and identification of tunnel lining. The main research contents are as follows: (1) the initial radar data of dry sand, gravel, mud, water and other substances filled with voids are obtained respectively through the physical model test. The data preprocessing process of ground penetrating radar (GPR) summarized in this paper is used to process GPR data. In order to further summarize and analyze the typical radar images of three kinds of diseases such as empty lining, undense entity and empty water in tunnel lining detection. (2) three attribute extraction techniques of GPR amplitude, spectrum and coherence are introduced. combined with the physical meaning of radar attribute, root mean square amplitude, average wave peak amplitude and time domain average energy are selected. Five radar attributes of similarity coefficient and average phase of-3dB bandwidth are used as characteristic parameters of target classification and recognition of ground penetrating radar (GPR). (3) five radar attributes, root mean square amplitude, average peak amplitude, average energy in time domain, similarity coefficient and average phase of-3dB bandwidth, are used as vector inputs by establishing machine learning binary classification (GPC) model for different fillers of voids. The four substances filled with air, gravel, mud and water in each cavity of the physical model are successfully identified, and the corresponding prediction probabilities are given. (4) the GPC prediction model verified by the physical model test is applied to the actual lining detection project of Cengxi tunnel, and the three lining diseases of emptiness, indense entity and empty water filling are successfully classified and identified. It is shown that the Gaussian prediction model for GPR tunnel lining detection proposed in this paper is feasible and has a good application prospect.
【学位授予单位】:广西大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U455.91

【参考文献】

相关期刊论文 前10条

1 洪旭程;李秀荣;;隧道衬砌检测中探地雷达图像的自动识别[J];工程地球物理学报;2015年06期

2 杨艳青;高永涛;贺少辉;齐法琳;;隧道衬砌背后积水地质雷达检测模型试验研究[J];中国铁道科学;2014年06期

3 刘东坤;巨能攀;霍宇翔;;地质雷达在不同介质填充下的频谱差异分析[J];现代隧道技术;2013年05期

4 周辉林;姜玉玲;徐立红;梁国卿;;基于SVM的高速公路路基病害自动检测算法[J];中国公路学报;2013年02期

5 杨艳青;贺少辉;齐法琳;刘建瑞;江波;;铁路隧道复合式衬砌地质雷达检测模拟试验研究[J];岩土工程学报;2012年06期

6 周斌;赵峰;江剑;刘伟;;探地雷达在隧道衬砌缺陷检测中的应用[J];铁道工程学报;2012年05期

7 张研;苏国韶;燕柳斌;;基于高斯过程机器学习方法的隧道围岩分类模型[J];现代隧道技术;2011年06期

8 张研;苏国韶;燕柳斌;;基于高斯过程机器学习的岩爆等级识别方法[J];地下空间与工程学报;2011年02期

9 徐冲;刘保国;刘开云;郭佳奇;;基于组合核函数的高斯过程边坡角智能设计[J];岩土力学;2010年03期

10 倪章勇;李海;;地质雷达解释隧道衬砌空洞大小的定量研究[J];铁道勘察;2010年01期

相关会议论文 前1条

1 谢雄耀;覃晖;;探地雷达探测隧道衬砌钢筋的神经网络识别方法[A];2010年全国工程地质学术年会暨“工程地质与海西建设”学术大会论文集[C];2010年

相关博士学位论文 前2条

1 赵文轲;探地雷达属性技术及其在考古调查中的应用研究[D];浙江大学;2013年

2 刘敦文;地下岩体工程灾害隐患雷达探测与控制研究[D];中南大学;2001年

相关硕士学位论文 前10条

1 李政;探地雷达在公路隧道中的应用研究[D];广西大学;2014年

2 秦存昌;隧道病害的探地雷达图像检测方法研究[D];南昌大学;2014年

3 项雷;公路隧道检测中探地雷达图像自动解释算法研究[D];南昌大学;2013年

4 胡本清;GPR在岩溶区隧道地质灾害中的应用研究[D];华东交通大学;2012年

5 魏三喜;基于高斯过程的分类算法及其应用研究[D];华南理工大学;2012年

6 陈家博;公路隧道不良地质体探地雷达图像解译分析[D];湘潭大学;2012年

7 江凯;探地雷达在路基检测中的应用研究[D];西南交通大学;2011年

8 秦承彬;探地雷达在隧道超前地质预报与衬砌检测中的应用研究[D];西南交通大学;2011年

9 杨晓晶;基于EMD和高斯过程回归组合模型的短期电力负荷预测方法研究[D];昆明理工大学;2010年

10 胡玉理;探地雷达地下目标特征提取与识别[D];国防科学技术大学;2009年



本文编号:2504578

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2504578.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户99787***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com