窄轨和标准轨距铁路有砟轨道动力响应的数值分析
发布时间:2021-03-03 07:46
本文的目的是研究列车速度对米轨和标准轨距轨道的动力响应。以坦桑尼亚—条中央铁路为例,利用MBS和FEA软件研究了不同速度下的动力响应,并对两条铁路轨道的动力响应结果进行了比较。坦桑尼亚和其他非洲国家的铁路运输的特点是窄轨,与其他运输方式相比,窄轨维护不方便,运量低。特别是坦桑尼亚正在修建标准轨距有砟铁路,为了满足运力和速度的运输需求,窄轨和标准轨距的比较至关重要。不同的文献都指出,现代铁路的提速普遍提高了铁路和地面的变形。当轨道车辆速度接近轨道地面的临界速度时,这些移动可能导致轨道变形,以及附近房屋内的相关噪音和结构振动。本文利用多体系统(MBS)软件和有限元软件(FEA)建立了三维(3D)模型,研究了移动荷载作用下车辆-轨道-路基系统在米轨和标准轨距下的动力响应。首先,利用Simpack MBS软件对铁路车辆进行建模,并将列车设置为不同的速度,考虑轮轨相互作用,计算得到了轮轨垂向力和脱轨系数。其次,在ABAQUS/CAE软件中,利用Simpack MBS获得的轮轨垂向力,输入到有限元分析软件对轨道进行计算分析。因此,列车速度对两种不同轨距轨道的影响即可被确定在轨道部件的动态响应上,选...
【文章来源】:北京交通大学北京市 211工程院校 教育部直属院校
【文章页数】:128 页
【学位级别】:硕士
【文章目录】:
ACKNOWLEDGEMENTS
中文摘要
ABSTRACT
LIST OF ABBREVIATIONS
LIST OF SYMBOLS
1. INTRODUCTION
1.1 General Background
1.2 Problem Statement
1.3 Research Objectives and Scope
1.4 Motivation of the Study
1.5 Case Study Area Description
1.6 Thesis Structure
2. LITERATURE REVIEW
2.1 Introduction
2.2 Ballasted Track
2.3 Subgrade Stress and Deformation
2.4 Subgrade Problems
2.4.1 Ballast degradation
2.4.2 Subgrade degradation
2.5 Track Components Dynamic Properties
2.5.1 Rails
2.5.2 The rail pads and fastenings
2.5.3 Sleepers/Ties
2.5.4 Ballast
2.5.5 Sub-Ballast,Subgrade and earthworks
2.5.6 Load conditions on the track structure
2.6 Vehicle-track interaction
2.6.1 Train speed effect
2.6.2 Rail beam on elastic foundation model
2.6.3 Lateral Forces
2.6.4 Lateral Force Limits
2.6.5 The role of the track components for the track stiffness
2.6.6 Longitudinal Forces
2.6.7 Dynamic Wheel/Rail(Impact)Forces
2.7 Chapter Summary
3. RESEARCH METHODOLOGY
3.1 Introduction
3.2 Assumptions
3.3 Modelling Procedures in SIMPACK
3.3.1 Introduction
3.3.2 Rail-Wheel Pair
3.3.3 Track Pair
3.3.4 Bodies
3.3.5 Track definition
3.4 Modelling Procedures in Abaqus/C AE
3.4.1 Introduction
3.4.2 Modules
3.4.3 Assembly
3.5 Safety
3.5.1 General
3.5.2 Derailment coefficient
3.5.3 Track shift forces
3.5.4 Curved track scenario
3.6 Chapter Summary
4. DYNAMIC MODELLING
4.1 Introduction
4.2 Numerical model and boundary conditions
4.3 Numerical model parameters and loading cases
4.4 Models
4.5 Dynamic Coupling Model
4.5.1 Vehicle Model
4.5.2 Track Model
4.5.3 Track irregularities
4.6 Chapter Summary
5. RESULTS AND DISCUSSION
5.1 Introduction
5.2 Model validation
5.3 Dynamic responses due to train speed
5.3.1 Dynamic response on rail
5.3.2 Dynamic response on sleeper
5.3.3 Dynamic response on ballast
5.3.4 Dynamic response on subballast
5.4 Dynamic response due to track gauge differences
5.4.1 Train speed of 80 km/h
5.4.2 Train speed of 120 km/h
5.4.3 Train speed of 160 km/h
5.4.4 Stresses and Displacements along the track
5.5 Chapter Summary
6. CONCLUSION AND RECOMMENDATIONS
6.1 Conclusion
6.2 Recommendations for Future Research
REFERENCES
AUTHOR'S RESUME
学位论文数据集
【参考文献】:
期刊论文
[1]Development of a simulation model for dynamic derailment analysis of high-speed trains[J]. Liang Ling,Xin-Biao Xiao,Xue-Song Jin. Acta Mechanica Sinica. 2014(06)
[2]Stability issues of the continuous welded rail track on the concrete sleepers on the curves with radius R ≤ 300 m[J]. Victor Vasylevich Rybkin,Nicolai Petrovich Nastechik. Sciences in Cold and Arid Regions. 2013(05)
本文编号:3060897
【文章来源】:北京交通大学北京市 211工程院校 教育部直属院校
【文章页数】:128 页
【学位级别】:硕士
【文章目录】:
ACKNOWLEDGEMENTS
中文摘要
ABSTRACT
LIST OF ABBREVIATIONS
LIST OF SYMBOLS
1. INTRODUCTION
1.1 General Background
1.2 Problem Statement
1.3 Research Objectives and Scope
1.4 Motivation of the Study
1.5 Case Study Area Description
1.6 Thesis Structure
2. LITERATURE REVIEW
2.1 Introduction
2.2 Ballasted Track
2.3 Subgrade Stress and Deformation
2.4 Subgrade Problems
2.4.1 Ballast degradation
2.4.2 Subgrade degradation
2.5 Track Components Dynamic Properties
2.5.1 Rails
2.5.2 The rail pads and fastenings
2.5.3 Sleepers/Ties
2.5.4 Ballast
2.5.5 Sub-Ballast,Subgrade and earthworks
2.5.6 Load conditions on the track structure
2.6 Vehicle-track interaction
2.6.1 Train speed effect
2.6.2 Rail beam on elastic foundation model
2.6.3 Lateral Forces
2.6.4 Lateral Force Limits
2.6.5 The role of the track components for the track stiffness
2.6.6 Longitudinal Forces
2.6.7 Dynamic Wheel/Rail(Impact)Forces
2.7 Chapter Summary
3. RESEARCH METHODOLOGY
3.1 Introduction
3.2 Assumptions
3.3 Modelling Procedures in SIMPACK
3.3.1 Introduction
3.3.2 Rail-Wheel Pair
3.3.3 Track Pair
3.3.4 Bodies
3.3.5 Track definition
3.4 Modelling Procedures in Abaqus/C AE
3.4.1 Introduction
3.4.2 Modules
3.4.3 Assembly
3.5 Safety
3.5.1 General
3.5.2 Derailment coefficient
3.5.3 Track shift forces
3.5.4 Curved track scenario
3.6 Chapter Summary
4. DYNAMIC MODELLING
4.1 Introduction
4.2 Numerical model and boundary conditions
4.3 Numerical model parameters and loading cases
4.4 Models
4.5 Dynamic Coupling Model
4.5.1 Vehicle Model
4.5.2 Track Model
4.5.3 Track irregularities
4.6 Chapter Summary
5. RESULTS AND DISCUSSION
5.1 Introduction
5.2 Model validation
5.3 Dynamic responses due to train speed
5.3.1 Dynamic response on rail
5.3.2 Dynamic response on sleeper
5.3.3 Dynamic response on ballast
5.3.4 Dynamic response on subballast
5.4 Dynamic response due to track gauge differences
5.4.1 Train speed of 80 km/h
5.4.2 Train speed of 120 km/h
5.4.3 Train speed of 160 km/h
5.4.4 Stresses and Displacements along the track
5.5 Chapter Summary
6. CONCLUSION AND RECOMMENDATIONS
6.1 Conclusion
6.2 Recommendations for Future Research
REFERENCES
AUTHOR'S RESUME
学位论文数据集
【参考文献】:
期刊论文
[1]Development of a simulation model for dynamic derailment analysis of high-speed trains[J]. Liang Ling,Xin-Biao Xiao,Xue-Song Jin. Acta Mechanica Sinica. 2014(06)
[2]Stability issues of the continuous welded rail track on the concrete sleepers on the curves with radius R ≤ 300 m[J]. Victor Vasylevich Rybkin,Nicolai Petrovich Nastechik. Sciences in Cold and Arid Regions. 2013(05)
本文编号:3060897
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/3060897.html