直流GIL不均匀场中金属微粒运动的数值模拟及放电特性分析
发布时间:2018-08-03 17:20
【摘要】:明确直流气体绝缘金属封闭输电线路(gas insulated transmission line,GIL)不均匀场中金属微粒运动及其引发的间隙放电具有重要意义。建立了微粒运动的三维电-力学瞬态耦合有限元数值计算模型:基于静电场原理,获得了微粒的电荷量及电场力;结合力学方程与拉普拉斯光顺方法给出了运动的动网格模型;为抑制微粒与壁面接触时网格拓扑改变引起的计算失败,提出了虚拟接触壁面条件。对楔形平板电极中典型的微粒运动进行数值模拟,通过实验验证了计算模型的准确性。获得了微粒表面的场强畸变,并根据流注起始判据对其引发的典型间隙放电形式进行分析,结果表明:微粒向电极运动时,表面场强畸变最严重部位总是分布在靠近电极一侧的顶端;微粒紧邻高(低)压电极而与低(高)压电极的放电由微放电引起;起跳阶段与高压电极的放电可能会立即引发整个间隙击穿。
[Abstract]:It is of great significance to determine the movement of metal particles and the gap discharge induced by metal particles in the nonuniform field of (gas insulated transmission line Gil (DC gas insulated metal enclosed transmission line). Based on the principle of electrostatic field, the electric charge and electric force of particles are obtained, and the dynamic mesh model of motion is given by combining mechanical equation and Laplacian smoothing method. In order to suppress the computational failure caused by the mesh topology change in the contact of particles with the wall, the virtual contact wall condition is proposed. The numerical simulation of the typical particle motion in a wedge plate electrode is carried out, and the accuracy of the model is verified by experiments. The field intensity distortion of the particle surface is obtained, and the typical gap discharge patterns caused by the particle surface are analyzed according to the flow initiation criterion. The results show that when the particle moves to the electrode, The most serious surface field intensity distortion is always located near the top of the electrode side, and the discharge of the particles close to the high (low) piezoelectric electrode and the low (high) voltage electrode is caused by the microdischarge. The discharge of the take-off phase and the high voltage electrode may cause the entire gap to break down immediately.
【作者单位】: 新能源与电力系统国家重点实验室(华北电力大学);中国电力科学研究院;河北省输变电设备安全防御重点实验室(华北电力大学);
【基金】:国家电网公司科技项目“特高压GIL微粒输运特性及控制技术研究” 河北省自然科学基金面上项目(E2015502081)~~
【分类号】:TM75
本文编号:2162440
[Abstract]:It is of great significance to determine the movement of metal particles and the gap discharge induced by metal particles in the nonuniform field of (gas insulated transmission line Gil (DC gas insulated metal enclosed transmission line). Based on the principle of electrostatic field, the electric charge and electric force of particles are obtained, and the dynamic mesh model of motion is given by combining mechanical equation and Laplacian smoothing method. In order to suppress the computational failure caused by the mesh topology change in the contact of particles with the wall, the virtual contact wall condition is proposed. The numerical simulation of the typical particle motion in a wedge plate electrode is carried out, and the accuracy of the model is verified by experiments. The field intensity distortion of the particle surface is obtained, and the typical gap discharge patterns caused by the particle surface are analyzed according to the flow initiation criterion. The results show that when the particle moves to the electrode, The most serious surface field intensity distortion is always located near the top of the electrode side, and the discharge of the particles close to the high (low) piezoelectric electrode and the low (high) voltage electrode is caused by the microdischarge. The discharge of the take-off phase and the high voltage electrode may cause the entire gap to break down immediately.
【作者单位】: 新能源与电力系统国家重点实验室(华北电力大学);中国电力科学研究院;河北省输变电设备安全防御重点实验室(华北电力大学);
【基金】:国家电网公司科技项目“特高压GIL微粒输运特性及控制技术研究” 河北省自然科学基金面上项目(E2015502081)~~
【分类号】:TM75
【相似文献】
相关期刊论文 前7条
1 陈济群;金属微粒在GIS中危害的实例分析[J];高压电器;1989年03期
2 曹红亮;杨卓;谭向宇;赵现平;王达达;;直流电压下GIS内金属微粒的局部放电特性研究[J];电气时代;2014年04期
3 谭向宇;郭浩;张乔根;张俊;;直流下GIS内运动金属微粒的超声波特性及状态识别[J];高电压技术;2010年02期
4 李■福;;耐磨铸铁叶轮在变压器油泵中的应用[J];变压器;1992年01期
5 杨河林;夏应清;温定娥;鲁述;刘武;;金属微粒-电介质复合材料的高频电磁特性[J];华中师范大学学报(自然科学版);2006年02期
6 唐妍梅;杨河林;;柱状金属微粒-电介质复合材料的等效介电常数[J];宇航材料工艺;2006年04期
7 ;[J];;年期
相关会议论文 前1条
1 汪振辉;陈体伟;李晶;王栋;乔海燕;黄爱平;;电沉积双金属微粒电极及对甲醇的电催化研究[A];中国化学会第26届学术年会新能源与能源化学分会场论文集[C];2008年
,本文编号:2162440
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2162440.html