铜锌锡硫薄膜太阳电池材料和器件的制备与性质研究
发布时间:2018-01-18 00:10
本文关键词:铜锌锡硫薄膜太阳电池材料和器件的制备与性质研究 出处:《华东师范大学》2014年博士论文 论文类型:学位论文
更多相关文章: 溶胶-凝胶法 薄膜太阳能电池 Cu_2ZnSnS_4 Cu_2ZnSn(S Se)_4 硫化 硒化 预退火 后退火
【摘要】:Cu2ZnSnS4(CZTS)系太阳能薄膜电池是在Cu(In,Ga)Se2(CIGS)薄膜太阳电池基础上发展起来的新型化合物半导体光伏器件。CZTS系半导体材料,由于其光电性质与CIGS类似,并且所用元素在地壳中的含量均较丰富,避免了像CIGS所用的稀有金属元素In、Ga,因而可作为一种低成本、高效率太阳薄膜电池的吸收层材料,也因此吸引了全球科技工作者的兴趣。目前已开发了基于真空和非真空的多种方法制备CZTS薄膜和电池,并取得了较好的电池效率。针对目前各种制备方法存在的问题,本课题提出一种低成本、绿色环保的溶胶-凝胶法制备CZTS和Cu2ZnSn(S,Se)4(CZTSSe)薄膜及电池器件,论文所得主要创新性结果如下: 1.选用无毒或低毒有机物乙二醇为溶剂,以金属有机盐为原料,采用溶胶-凝胶非硫化法(后退火过程中不使用硫源)制备CZTS薄膜。制备的CZTS薄膜表面平整、致密、没有孔洞;不过,薄膜均贫硫,但通过调节退火工艺可以提高薄膜中硫组分的含量到符合化学计量比。 选用乙二醇为溶剂,采用金属有机盐制备CZTS薄膜,制备过程中避免硫化(简化工艺、降低对设备的要求以及减少对环境的污染);有机盐制备的CZTS薄膜较致密、表面没有孔洞;通过预退火对CZTS前驱膜组分影响的分析,寻找到最佳的预退火温度250℃和预退火时间50s;通过后退火对CZTS薄膜组分影响的分析,寻找到最佳的后退火温度530℃和后退火时间30Os; CZTS前驱体溶胶中S/Cu的摩尔比在4.0左右时,可以制备硫组分符合化学计量比的CZTS薄膜,同时制备的CZTS薄膜表面平整、致密。 2.溶胶-凝胶后硫化法制备的CZTS薄膜电池效率最高达4.28%;同时探索了非硫化法制备CZTS薄膜电池,其效率为2.1%,说明其方法是可行的,但效率低,需优化制备工艺。 制备并优化了电池其它各层薄膜,采用凝胶-凝胶后硫化法制备CZTS薄膜电池,吸收层CZTS在570℃C硫化20min、CdS薄膜厚度~50nm时制备的器件效率达到最大值,为4.28%;同时探索了凝胶-凝胶非硫化法制备CZTS薄膜电池,其电池效率为2.1%,说明这样的工艺路线是可行的,只是还有很多需要优化改进的地方。 3.溶胶-凝胶后硒化法可以实现制备CZTSSe薄膜,此方法较传统工艺节省了硫化过程;在制备CZTSSe薄膜的基础上,制得CZTSSe电池,其转换效率为2.92%。 通过CZTS溶胶制备CZTS前驱体薄膜,然后经过预退火,最后在硒化炉中硒化,可以制备出CZTSSe薄膜。后退火过程中没用硫化,简化了制备工艺;随着硒化时间的延长及用硒量的增加,x=Se/(S+Se)从0增加到0.91,薄膜的带隙呈现减小趋势,光学带隙(Eg)从1.51减小到1.14eV;制备CZTSSe电池器件的条件较苛刻,尤其是对硒化气压的要求比较高,通过实验得到较好的硒化气压条件:硒化前,硒化炉的石英管内充N2、并使气压达到200Torr,然后关闭石英管两端的气阀、进行硒化;本课题制备的CZTSSe电池器件效率为2.92%,说明这样的工艺路线是可行的,但效率比较低,因此还有很多需要优化改进的地方。
[Abstract]:Cu2ZnSnS4 (CZTS), thin film solar cell is in Cu (In, Ga) Se2 (CIGS) model of compound semiconductor photovoltaic devices.CZTS semiconductor materials based on the development of thin film solar cells, because of its photoelectric properties similar to CIGS, and the content of elements in the crust are relatively abundant, avoided a rare the metal elements used by CIGS In Ga, which can be used as a low cost, high efficiency absorption layer of film solar battery, has also attracted interest in the field of global science and technology. It has developed a legal vacuum and non vacuum deposition of CZTS films and a variety of battery based on, and achieved good efficiency of the battery. At present, various preparation methods of the existing problems, this paper puts forward a kind of low cost, green CZTS prepared by sol-gel method and Cu2ZnSn (S, Se) 4 (CZTSSe) thin film and battery device, the main innovative results are as follows: :
1. selection of non-toxic or low toxic organic compounds with ethylene glycol as solvent, organic metal salts as raw materials by sol gel method (do not use non sulfide sulfur source annealing process) for the preparation of the CZTS film. CZTS film surface roughness, the preparation of dense, no holes; however, films are sulfur deficient, but improved stoichiometric ratio. Content of sulfur components in the films can be adjusted by the annealing process
Using ethylene glycol as solvent, the CZTS thin films prepared by metal organic salt curing system, avoid the preparation process (simplify process and reduce the requirement on equipment and reduce the pollution of the environment); CZTS thin films prepared by organic salt is dense, no voids; through the analysis of the impact of pre annealing on CZTS precursor film components and find the pre annealing temperature of 250 DEG C and pre annealing time optimal 50s; through the analysis after annealing on CZTS thin films. The influence, to find the best annealing temperature of 530 DEG C after the annealing time and the molar ratio of S/Cu 30Os; CZTS precursor sol in 4, sulfur component can be prepared in accordance with CZTS the film stoichiometry, and CZTS thin films were prepared with smooth surface and compact.
2., the efficiency of CZTS thin film cell prepared by sol-gel vulcanization is up to 4.28%. Meanwhile, the CZTS thin film battery prepared by non sulfurization method is explored, and its efficiency is 2.1%. It shows that the method is feasible, but the efficiency is low, so it is necessary to optimize the preparation process.
Preparation and optimization of the battery the other layers of films by sol-gel after vulcanization of CZTS films prepared by cell absorption layer CZTS at 570 DEG C sulfide 20min, CdS thin film thickness to 50nm preparation device efficiency reaches the maximum value, 4.28%; at the same time to explore the sol-gel method to prepare CZTS films of nonsulfide the battery, the battery efficiency is 2.1%, indicating that the process is feasible, but there are many places need to be improved.
3., after sol-gel selenization, CZTSSe thin films can be prepared. This method saves sulphide process than traditional process. Based on the preparation of CZTSSe thin films, CZTSSe battery is obtained, and its conversion efficiency is 2.92%..
Preparation of CZTS precursor film by CZTS sol, and then through the pre annealing furnace, finally in selenium selenium, can be prepared CZTSSe films. In the process of annealing without vulcanization, simplifies the preparation process; with selenium extension and by increasing the amount of Se time, x=Se/ (S+Se) from 0 increased to 0.91, the band gap of the films decreases, the optical band gap (Eg) decreases from 1.51 to 1.14eV; preparation of CZTSSe battery device condition is more severe, especially for selenium pressure requirements are relatively high, the better selenium pressure conditions: selenium, selenium quartz furnace tube filling and N2, so that the pressure is up to 200Torr, and then close the valve at both ends of the quartz tube, by selenium; the CZTSSe battery device preparation efficiency is 2.92%, indicating that the process is feasible, but the efficiency is relatively low, so there are a lot of places need to be improved.
【学位授予单位】:华东师范大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TM914.4
【参考文献】
相关期刊论文 前6条
1 邬恒前;;金属氧化物纳米颗粒溶胶—凝胶合成概述[J];广东化工;2011年01期
2 黎立桂;鲁广昊;杨小牛;周恩乐;;聚合物太阳能电池研究进展[J];科学通报;2006年21期
3 张松;肖可娴;;紫外/可见/近红外分光光度计测量玻璃可见光透射比的不确定度分析与表示[J];深圳土木与建筑;2010年01期
4 孙云,王俊清,杜兆峰,舒保健,于刚,温国忠,周祯华,孙健,李长健,张丽珠;CIS和CIGS薄膜太阳电池的研究[J];太阳能学报;2001年02期
5 李凤岩;李长健;熊绍珍;;薄膜太阳电池系列讲座(8) CIGS薄膜太阳电池(下)[J];太阳能;2012年01期
6 郑春满;郭宇杰;谢凯;韦永滔;;薄膜太阳能电池光电转换材料研究进展[J];宇航材料工艺;2010年04期
,本文编号:1438582
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1438582.html
教材专著