基于Jeffreys先验的PSA通用数据贝叶斯处理方法
发布时间:2018-08-27 11:39
【摘要】:利用Jeffreys先验理论推导出gamma分布和beta分布的Jeffreys先验,在此基础上通过贝叶斯方法得到通用数据分布超参数计算表达式,最后以文献数据为例对失效率分布的超参数进行计算。与经典统计学方法所得结果相比,基于Jeffreys先验的数据处理方法简单易行,可最大限度地保留样本信息,给出的概率分布不确定性较小。
[Abstract]:The Jeffreys priori of gamma distribution and beta distribution is derived by using the Jeffreys priori theory. On this basis, the superparametric expression of general data distribution is obtained by Bayesian method. Finally, the superparameters of the failure rate distribution are calculated by taking the literature data as an example. Compared with the results obtained by the classical statistical method, the data processing method based on Jeffreys priori is simple and feasible, and the sample information can be retained to the maximum extent, and the uncertainty of the probability distribution given is smaller.
【作者单位】: 西北核技术研究所强脉冲辐射模拟与效应国家重点实验室;
【分类号】:TM623
[Abstract]:The Jeffreys priori of gamma distribution and beta distribution is derived by using the Jeffreys priori theory. On this basis, the superparametric expression of general data distribution is obtained by Bayesian method. Finally, the superparameters of the failure rate distribution are calculated by taking the literature data as an example. Compared with the results obtained by the classical statistical method, the data processing method based on Jeffreys priori is simple and feasible, and the sample information can be retained to the maximum extent, and the uncertainty of the probability distribution given is smaller.
【作者单位】: 西北核技术研究所强脉冲辐射模拟与效应国家重点实验室;
【分类号】:TM623
【参考文献】
相关期刊论文 前3条
1 茆定远,薛大知;核电站PSA分析中可靠性数据处理的贝叶斯方法[J];核动力工程;2000年05期
2 何R,
本文编号:2207159
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2207159.html