当前位置:主页 > 科技论文 > 动力论文 >

场协同分析外部流动及板翅管换热器周期性热流体优化

发布时间:2017-11-01 07:31

  本文关键词:场协同分析外部流动及板翅管换热器周期性热流体优化


  更多相关文章: 板翅管换热器 场协同角 优化 粘性耗散 传热效率


【摘要】:世界范围内能源利用面临着严重的问题,存在能源利用效率低和换热器笨重的缺点,使该系统的经济可行性有所降低。在板翅管换热器中,为了得到高效率的能源转化技术,建立数学模型对换热器进行优化分析,使用场协同理论(FSP)作为强化传热的方法和理论依据。抛物型能量方程使用格林函数结合加权残差方法求解得到温度分布。然后,通过对管壁面几何参数和等温边界的对流换热系数进行分析建立协同场。为了方便求解和自定义,使用FLUENT软件,一个离散的通用的传递方程被使用,该方程基于湍流对流传热,用于求解协同作用。数值模拟被认为在圆形和椭圆形管束的平移周期边界条件下有有限的压力梯度。从得出Nu数的结果表明,对流换热不仅取决于温差、流体速度和流体性质,而且取决于流场和温度场之间的场协同角和场协同数。当增加进口流速时,椭圆形管束中传热效果显著增强,场协同数增加,场协同角减少。在相同的操作工况下,圆形管束设计和椭圆形管束设计所得平均场协同角分别为78.97°和66.31°使用场协同优化后板翅管换热器的椭圆形管束,与圆形管束相比,场协同角和场协同数分别增加22.68%和35.98%。由于没有实验验证第一演绎的场协同原理,本文通过实验分析加热平板表面的协同情况,实验使用热成像系统和快速照相机得到温度场和流场。通过设置四种不同射流高度和射流速度,在Re数为2,602~6,505之间时,使用场协同原理对所得流场和温度场进行优化分析。基于平板射流得到的场协同分析方程被用来研究由实验得耢向加热平板的温度场和流场之间的协同作用,尤其是中心积分区域得到的有清晰速度流线的流场和温度场之间的协同作用。传热过程的不可逆性可表示为火积(Entransy)耗散极值原理EED,熵产最小化原理MEG,外部泵功耗原理EPWC,和火用(Exergy)损最小化原理EDM。板翅管换热器的对流层流和湍流传热的场协同方程是基于耗散极值原理进行的,而其他的传热过程只进行层流对流换热场协同方程以减小计算成本。将传热过程粘性耗散及其产热过程的不可逆性设为单一目标优化约束条件,通过泛函变分数值模拟,构建附加体积力的动量方程与能量方程进行耦合,然后得到稳定的层流对流换热最优场协同方程。场协同方程的解给出了优化后的流场,从管表面到两管之间区域的旋涡尺寸不断减小,在管束中随着流体流动Nu数不断增加。根据以上不同的原理进行优化分别得到的最优协同场有不同的粘性耗散效应。通过这种新的优化方法获得最优速度场方程,进而得到稳定的层流对流换热最优速度场。除此此外,数值研究得到显式二维不可压缩流解析解,这些解是完全或非协同的。这些解是在边界上协同的,使协同作用仅发生在流体和管表面之间的边界。这些解除了具有验证完全或非协同存在的可能性的理论意义,还可以用于进一步检查某区域的协同效果的准确性和有效性,为选择和设计合适的强化换热设备提供参考。最后,使用以速度优化模式作为方向,设计出倾斜涡发生器,在实际的设备可以引入使用。倾斜的涡发生器能产生涡旋流动,以提高整体流场层流与湍流之间的热交换。作为说明性的例子,对在板翅管换热器中有无涡发生器换热和流动进行场协同角分析,结果表明,在管壁上下表面附近安装涡发生器后得到最优的场协同角为86.53。,效能因子为PEC=2.33。
【关键词】:板翅管换热器 场协同角 优化 粘性耗散 传热效率
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TK172
【目录】:
  • Abstract5-7
  • 摘要7-20
  • 1 Introduction20-36
  • 1.1 Motivation of the study20-22
  • 1.1.1 Flow a cross bank of tubes20-21
  • 1.1.2 Heat transfer enhancement techniques21-22
  • 1.2 Background to the study22-33
  • 1.2.1 Plate finned tube heat exchanger22-28
  • 1.2.2 Fluid flow and heat transfer modeling for current plate finned tube heat exchanger28-33
  • 1.3 Study objectives33
  • 1.4 Layout of thesis33-36
  • 2 Review on FSP as convective heat transfer mechanism36-51
  • 2.1 Synergy based momentum and energy equations36-39
  • 2.2 Synergy based on the conservation equation for mechanical energy39-40
  • 2.3 Examples of convection with different field synergy techniques40-45
  • 2.3.1 Two parallel porous plates40-41
  • 2.3.2 Single finned tube41-42
  • 2.3.3 Micro channels with different ribs42-43
  • 2.3.4 Circular tube fitted with helical screw-tape inserts43-44
  • 2.3.5 Effects of the fouling in round tube44-45
  • 2.4 Optimization method of convective heat transfer using extremum entransy dissipation EED45-47
  • 2.5 Computational fluid dynamics CFD47-50
  • 2.5.1 Preprocessing and solver47-48
  • 2.5.2 Governing equations of thermo-fluid field48
  • 2.5.3 Turbulence models48-49
  • 2.5.4 Numerical methods49-50
  • 2.6 Closure50-51
  • 3 Numerical investigations of convective heat-flow over round and elliptic tube bundle basedon field synergy principle51-74
  • 3.1 Physical model51-54
  • 3.2 Boundary conditions and CFD simulation54-56
  • 3.3 Mesh verification56-57
  • 3.4 Effect of fluid flow and heat transfer57-61
  • 3.5 Tube row number effect61-62
  • 3.6 Tube pitch effect62-64
  • 3.7 Analysis of temperature difference64-65
  • 3.8 Analysis of pressure drop65-67
  • 3.9 Analysis of heat transfer enhancement and effectiveness67-70
  • 3.10 Concept of field synergy factor70-73
  • 3.11 Closure73-74
  • 4 Experimental study of field synergy principle on a heated plate74-88
  • 4.1 Variation of the total heat transfer rate74
  • 4.2 Visualization fluid flow and temperature distributions74
  • 4.3 Experiment set-up74-76
  • 4.4 Measurement system76-78
  • 4.5 Uncertainty of the experiment and accuracy78-79
  • 4.6 Velocity field79-81
  • 4.7 Temperature field81-83
  • 4.8 Effect of operating and configuration of parameters83-84
  • 4.9 Synergy number84-87
  • 4.10 Closure87-88
  • 5 Field synergy equations based on the approaches of minimum heat consumption in heatconvection88-118
  • 5.1 Laminar field synergy equation based Euler's equation and EED88-92
  • 5.2 Field synergy equation for turbulent convection92-97
  • 5.3 Water-flow heated by symmetrical rows of tube using RNG k-ε model97-98
  • 5.4 Fully developed turbulent flow in elliptical tube bundle by RNG k-ε model98-100
  • 5.5 Water now through a heated tube bundle with uniform heat flux condition100-102
  • 5.6 Predictive optimization method based on the minimum heat transfer entropy generation MEG102-107
  • 5.6.1 Basic assumptions102
  • 5.6.2 Basic equations102-103
  • 5.6.3 Integal constraint and objective functional103
  • 5.6.4 Solution of the variational problem103-107
  • 5.7 Derivation of optimization equations for external pump work consumption EPWC107-111
  • 5.7.1 Heat transfer enhancement107-108
  • 5.7.2 Optimization equations108-111
  • 5.8 Optimization of the heat transfer process using application of exergy destruction minimization EDM111-116
  • 5.9 Closure116-118
  • 6 Numerical solutions of analytical convective synergy field and novel designs118-138
  • 6.1 Numerical solution method for analytical convective synergy field119-120
  • 6.2 Synergy solution with heat source(Ⅰ)using method of separating all variables with addition120-122
  • 6.2.1 Full synergy field120
  • 6.2.2 Non-synergy field120-122
  • 6.3 Synergy solutions with heat source(Ⅱ)concise solution family using method of separating variables with addition122-126
  • 6.3.1 Solution with linear temperature distribution122-124
  • 6.3.2 Solution with-out heat sources124-126
  • 6.4 Synergy solution with heat source(Ⅲ)using hybrid method of separating variables126-127
  • 6.5 Novel designs of plate finned tube heat exchanger127-129
  • 6.6 Grid independence for novel designs129-130
  • 6.7 Evaluation of novel enhanced heat transfer in plate finned tube heat exchanger130-133
  • 6.8 Performance evaluation criteria PEC133-137
  • 6.9 Closure137-138
  • 7 Conclusion138-142
  • 7.1 Principal conclusions138-140
  • 7.2 Innovation points140-141
  • 7.3 Future work141-142
  • References142-149
  • Achievements as a PhD student149-150
  • Acknowledgement150-151
  • About the Author151-153

【相似文献】

中国期刊全文数据库 前4条

1 张延静;江楠;李毅;;斜针翅管换热器数值模拟[J];广州化工;2013年06期

2 邱雄飞;刘盛田;郭建增;柳琪;胡兴伟;;高翅管换热器传热及流阻特性的数值模拟研究[J];舰船防化;2013年02期

3 邱雄飞;刘盛田;郭建增;柳琪;胡兴伟;;利用高翅管换热器提高压力恢复系统效率[J];强激光与粒子束;2014年09期

4 ;[J];;年期

中国博士学位论文全文数据库 前1条

1 Mohammed Osman Ali Hamid;场协同分析外部流动及板翅管换热器周期性热流体优化[D];大连理工大学;2015年



本文编号:1125837

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dongligc/1125837.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d8ca1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com