燃气轮机涡轮动叶冷却结构设计及数值模拟研究
[Abstract]:Heavy gas turbine marks the development level of a country's comprehensive national strength and major technology, high performance requirements and harsh working conditions. Because the thermal efficiency of gas turbine increases with the increase of inlet temperature of turbine rotor, the operating temperature is much higher than the allowable temperature of the blade, so the temperature level and temperature change of the blade material must be limited to ensure the reasonable service life of the blade. The effective cooling technology can not only improve the initial temperature of gas and prolong the life of turbine blade, but also improve the efficiency of gas turbine, ensure the safe and stable operation of the unit, reduce the emission of pollutants and protect the environment. The advantages of steam cooling compared with air cooling are as follows: the thermal conductivity of steam is better than that of air, and its cooling efficiency is higher, and it is not necessary to extract air from the compressor, which is helpful to improve the efficiency of the compressor. Thus, the efficiency of the gas turbine is improved. In this paper, the cooling characteristics of the first stage turbine blade of gas turbine are analyzed by using the closed steam cooling method and numerical simulation of fluid-solid coupling. Firstly, according to the characteristics of different cooling technology and the difference of heat load and shape of turbine blade, four kinds of turbine blades with different cooling structures are designed. (2) the tail edge has staggered spoiler cooling structure blade; (3) the tail edge has inhomogeneous cylindrical spoiler cooling structure blade; (4) the tail edge has uneven inclined column spoiler column cooling structure blade. Then the physical models of the four cooling structure blades were established by SolidWorks software. Secondly, under the same heat load and boundary condition, the fluid-solid coupling numerical simulation analysis of four kinds of cooling structure blades with different spoiler column is carried out by fluent software, and the pressure and velocity distribution of the cascade channel of the four kinds of blades are analyzed respectively. The relative cooling effect, the highest temperature, the average temperature and the average relative cooling effect are compared. The results show that the cooling effect of the blade with uneven oblique column spoiler column is the best. Finally, the fluid-solid coupling numerical simulation under different working conditions, such as temperature, pressure, mass flow rate and so on, is carried out to analyze the heat transfer and flow characteristics of the blade model with the best cooling effect. The pressure and velocity distribution of blade cascade channel, the distribution of outer wall temperature, the relative cooling effect, the maximum temperature, the average temperature and the average relative cooling effect of the blade under different working conditions are obtained, and the variation law of the blade outer wall temperature, the relative cooling effect, the average temperature and the average relative cooling effect are obtained. The influence of different working conditions on blade cooling effect was analyzed. It provides a reference for the research of turbine blade cooling technology of gas turbine.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TK472
【相似文献】
相关期刊论文 前10条
1 吴向宇;黎旭;时艳;张翠华;杜治能;;典型层板冷却结构热疲劳破坏特性研究[J];航空动力学报;2014年05期
2 王晋声;罗磊;崔涛;王松涛;;燃气涡轮导叶冷却结构设计及数值模拟[J];中国电机工程学报;2014年05期
3 迟重然;温风波;王松涛;冯国泰;;涡轮动叶冷却结构设计方法Ⅱ:管网计算[J];工程热物理学报;2011年06期
4 何立明,李长林,吴二平;席壁冷却结构的无因次温差比η和θ的实验研究[J];航空学报;1996年01期
5 张翔;饶宇;;具有凹陷涡发生器的网格冷却结构内的流动与传热特性[J];航空动力学报;2013年07期
6 孟祥宁;王卫领;朱苗勇;;冷却结构对连铸结晶器铜板热变形的影响[J];北京科技大学学报;2012年12期
7 余志伟;何培峰;李燕;谢永奇;宋俊;;M310堆顶冷却结构流场和温度场数值仿真[J];CAD/CAM与制造业信息化;2014年07期
8 许佩佩;黄亚继;徐亮亮;;不同结构PV/T系统散热方式的试验研究[J];可再生能源;2013年05期
9 魏忠信;陈建国;;氟里昂冷电动机的冷却结构[J];电工技术;1987年10期
10 马世岩;徐国强;邓宏武;陶智;丁水汀;;微小通道在叶片冷却结构中的应用研究[J];航空动力学报;2009年09期
相关会议论文 前4条
1 马维;马向红;;主动冷却结构热力响应近似计算方法与数值仿真设计[A];高超声速专题研讨会暨第五届全国高超声速科学技术会议论文集[C];2012年
2 马维;马向红;;主动冷却结构热力响应近似计算方法与数值仿真设计[A];第七届全国流体力学学术会议论文摘要集[C];2012年
3 王建华;徐华昭;何凌辉;刘世俭;张波;;燃料冷却结构中的流-固-热耦合问题研究[A];第二届高超声速科技学术会议会议日程及摘要集[C];2009年
4 王答成;;屏成型凸模角部冷却结构的探讨[A];2005年电子玻璃学术交流研讨会论文集[C];2005年
相关博士学位论文 前1条
1 陈凯;燃气涡轮冷却结构设计与气热弹多场耦合的数值研究[D];哈尔滨工业大学;2010年
相关硕士学位论文 前10条
1 杜晓东;燃气涡轮叶片尾缘冷却结构的参数化设计及数值分析[D];哈尔滨工业大学;2016年
2 张贺;燃气轮机涡轮动叶冷却结构设计及数值模拟研究[D];华北电力大学(北京);2016年
3 王章生;模具随形冷却结构对非均匀壁厚制品精密成型的热响应研究[D];南昌大学;2015年
4 朱凯迪;高速飞行器空气涡轮气动及冷却结构设计[D];哈尔滨工业大学;2014年
5 冯宇;某燃气涡轮第二级叶片冷却结构设计及气热耦合数值研究[D];哈尔滨工业大学;2010年
6 许宏博;某燃气涡轮高压级叶栅冷却结构设计及气热耦合数值模拟[D];哈尔滨工业大学;2010年
7 姚建辉;低压涡轮叶片冷却结构优化设计[D];哈尔滨工程大学;2013年
8 韩绪军;涡轮叶片冷却结构参数化及带肋通道优化设计[D];哈尔滨工业大学;2011年
9 刘明林;采用管道网络法的燃气涡轮冷却结构气热耦合数值研究[D];哈尔滨工业大学;2012年
10 温惠;MOA的冷却结构设计与散热研究[D];山东大学;2011年
,本文编号:2120453
本文链接:https://www.wllwen.com/kejilunwen/dongligc/2120453.html