带扰流结构的微通道流动与传热数值研究
[Abstract]:In the past ten years, micro-electro-mechanical system technology and nano-technology have made unprecedented development. Human beings are moving from the macro-world of meter and centimeter to the micro-world of micron and nano. As an important branch of micro-electro-mechanical system technology, micro-fluid technology has also made great progress in recent years and has made great progress. Considerable progress has been made. In the new era, the miniaturization of electronic components is an inevitable trend. These micro-electronic components have changed the way of life of human beings and entered the "micro-era". The local heat flux density is getting higher and higher, and the main reason for the failure of these integrated components is that the working temperature is too high to operate accurately and effectively. With the rapid development of processing technology, electronic components are becoming smaller and smaller in size, lighter and lighter in weight, more powerful in function and higher in integration, which provides a good prerequisite for solving the problem of micro-scale heat transfer. Micro-scale science has gradually become the forefront of research in modern science and technology. Nowadays, heat transfer and heat dissipation in the field of micro-scale have become a problem to be solved urgently. Therefore, higher requirements have been put forward for heat dissipation technology. For this kind of high-integrated electronic components, micro-channel heat dissipation is the most ideal and effective way, and it is also an important development direction in the field of heat dissipation. The theoretical study of heat dissipation is carried out, and the model of microchannel with turbulent structure, the traditional long straight microchannel model and the corresponding research methods are established. Based on the traditional long straight microchannel, a simple obstruction is added, i.e. a turbulent structure. The mechanism of enhanced heat transfer in this microchannel with turbulent structure is to use the obstruction to make the fluid flow radially, thereby enhancing the mixing of the fluid in the microchannel and causing the fluid to become disturbed when flowing in the microchannel. The turbulent fluid can obtain higher convective heat transfer coefficient and enhance the heat transfer efficiency between the fluid and the microchannel wall. Then the influence of fin density on the heat transfer is studied. Four fins and six fins are set in the same length microchannel respectively. Then the influence of inlet velocity on heat transfer in microchannels is studied. Five different inlet velocities are set up to calculate the velocity field, temperature field and pressure field. Finally, the conclusion is drawn. The research method of this paper is to use ANYSY CFD ICEM software to establish the structure with turbulence. The two-dimensional models of microchannel and traditional long straight microchannel are imported into FLUENT software to pre-process the definitions of solid materials and fluid properties, and then SIMPLE algorithm is selected to calculate the fluid flow in microchannel under uniform heat flux load. Then, different inlet velocities are set to calculate and compare the temperature distribution nephogram, pressure field, velocity vector diagram, temperature distribution diagram at the heat source and temperature distribution diagram at the fluid-solid interface. When the velocity increases, the Reynolds number increases, and the pressure drop increases, that is, the conveying power of the fluid flow in the microchannel is increased. In a certain range, the effect of heat transfer can be enhanced by increasing the fluid velocity. (3) When the size of the microchannel is given, the heat transfer of the microchannel increases with the increase of Reynolds number; when the increase is to a certain extent, the heat transfer of the microchannel becomes stable gradually, that is, the effect of heat transfer remains unchanged.
【学位授予单位】:武汉工程大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TK124
【相似文献】
相关期刊论文 前10条
1 苗辉;黄勇;陈海刚;;随机粗糙微通道中的流动和传热特性[J];北京航空航天大学学报;2011年06期
2 相威;叶丁丁;廖强;李俊;朱恂;;异形截面微通道内气液两相流动的实验研究[J];工程热物理学报;2013年06期
3 刘焕玲;贾建援;邵晓东;;圆形微通道的热交换特性及其尺寸效应[J];西安交通大学学报;2007年11期
4 程婷;罗小兵;黄素逸;刘胜;;基于一种微通道散热器的散热实验研究[J];半导体光电;2007年06期
5 全晓军;陈钢;郑平;;微通道气液同向流动中气泡射流特性[J];工程热物理学报;2008年02期
6 王爱国;冯妍卉;林林;张欣欣;;三角形粗糙元的微通道内流动换热的模拟分析[J];热科学与技术;2008年01期
7 宋善鹏;于志家;刘兴华;秦福涛;方薪晖;孙相_g;;超疏水表面微通道内水的传热特性[J];化工学报;2008年10期
8 李志刚;淮秀兰;陶毓伽;王立;;二极管激光器阵列微通道冷却实验研究[J];工程热物理学报;2009年05期
9 漆波;李隆键;王锋;崔文智;;微通道尺寸对甲烷蒸汽重整性能的影响[J];太阳能学报;2009年06期
10 刘凯辉;肖晓天;刘莹;;平行板微通道内压力驱动流的流动机理[J];机械设计与研究;2010年05期
相关会议论文 前10条
1 史东山;李锦辉;刘赵淼;;关于微通道相关问题研究方法现状分析[A];北京力学会第18届学术年会论文集[C];2012年
2 逄燕;刘赵淼;;温黏关系对微通道内液体流动和传热性能的影响[A];北京力学会第18届学术年会论文集[C];2012年
3 范国军;逄燕;刘赵淼;;微通道中液体流动和传热特性的影响因素概述[A];北京力学会第18届学术年会论文集[C];2012年
4 刘丽昆;逄燕;刘赵淼;;几何参数对微通道液体流动和传热性能影响的研究[A];北京力学会第18届学术年会论文集[C];2012年
5 刘丽昆;刘赵淼;申峰;;几何参数对微通道黏性耗散影响的研究[A];北京力学会第19届学术年会论文集[C];2013年
6 肖鹏;申峰;刘赵淼;;微通道中矩形微凹槽内流场的数值模拟[A];北京力学会第19届学术年会论文集[C];2013年
7 肖鹏;申峰;刘赵淼;李易;;凹槽微通道流场的三维数值模拟[A];北京力学会第20届学术年会论文集[C];2014年
8 周继军;刘睿;张政;廖文裕;佘汉佃;;微通道传热中的两相间歇流[A];上海市制冷学会2011年学术年会论文集[C];2011年
9 夏国栋;柴磊;周明正;杨瑞波;;周期性变截面微通道内液体流动与传热的数值模拟研究[A];中国力学学会学术大会'2009论文摘要集[C];2009年
10 娄文忠;Herbert Reichel;;硅微通道致冷系统设计与仿真研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
相关重要报纸文章 前2条
1 本报记者 陈杰;空调将进入微通道时代[N];科技日报;2008年
2 张亮;美海军成功为未来武器研制微型散热器[N];科技日报;2005年
相关硕士学位论文 前10条
1 刘征;超疏水微通道传递特性的数值模拟[D];大连理工大学;2010年
2 高晓玉;微通道光生物制氢反应器内微生物生长及传输特性[D];重庆大学;2010年
3 刘焕玲;微通道换热研究[D];西安电子科技大学;2004年
4 刘莹莹;网络化微通道散热器的设计仿真与温度控制[D];西安电子科技大学;2008年
5 刘秉言;微通道中流动特性的大涡模拟[D];天津大学;2007年
6 赵向阳;光学表面等离子共振生物传感器的微通道系统研究及仪器设计[D];河南农业大学;2008年
7 逄燕;微通道内液体流动和换热特性的数值模拟研究[D];北京工业大学;2011年
8 葛浩;新型微通道热沉的设计和数值研究[D];上海交通大学;2007年
9 谢灵丹;微通道内微细颗粒对气液传质的影响研究[D];天津大学;2010年
10 刘超;装有纵向涡流产生器的矩形微通道内的传热与流动的实验和模拟研究[D];华中科技大学;2011年
,本文编号:2189807
本文链接:https://www.wllwen.com/kejilunwen/dongligc/2189807.html