当前位置:主页 > 科技论文 > 动力论文 >

纳米多孔表面高热流密度下传热特性研究

发布时间:2018-11-20 07:00
【摘要】:随着微电子技术的高速发展,电子元器件的主频和集成度越来越高,导致单位面积上电子元件的功耗和产热量急剧增加。这些热量如果不能及时散失,会导致器件温度逐渐升高,从而影响其运行性能和使用寿命。因此,电子元器件热障问题已成为当前制约高集成度电子元器件技术发展的瓶颈之一。传统的风冷等散热方式已经无法满足高热流密度下微电子元器件散热要求,本课题以强化相变传热为研究内容,通过微加工和阳极氧化技术,制备出了不同结构尺寸的微槽群和纳米多孔传热表面,并对各类表面进行了传热特性研究。研究结果表明:在不同阳极氧化工艺条件下,纳米多孔表面的形貌会有所不同,进而会对其传热性能产生影响。在本文中,以草酸为电解液,控制温度在10oC电压40V时,可以成功制备出孔径约80nm且呈阵列分布的纳米多孔薄膜;而以磷酸为电解液,温度控制在10oC电压85V时,其纳米孔直径增大到200nm左右,且孔与孔之间存在融合交联。纳米孔的存在一方面可以作为汽化核心,另一方面增大了传热面积。纳米多孔表面的传热实验表明,纳米孔表面沸腾时汽泡脱离传热表面直径小、频率高,从而具有较高的传热系数,特别是在高热流密度下,强化传热效果更加明显。与微槽群表面相比,在热流密度相对较低时,传热系数小;随着热流密度增加,传热系数迅速增加。为此本文提出微纳米复合型结构表面以提高临界热流密度。实验结果表明,微纳米复合型结构表面传热效果强于纳米多孔表面以及微槽群表面。在相同实验条件下,传热系数是光滑表面的2倍。
[Abstract]:With the rapid development of microelectronic technology, the main frequency and integration of electronic components are becoming higher and higher, which leads to a sharp increase in power consumption and heat production of electronic components per unit area. If these heat can not be lost in time, the device temperature will rise gradually, which will affect its performance and service life. Therefore, the thermal barrier of electronic components has become one of the bottlenecks restricting the development of high integrated electronic components. The traditional cooling methods, such as air cooling, can no longer meet the requirements of heat dissipation of microelectronic components under high heat flux. In this paper, the enhancement of phase change heat transfer is considered as the research content, and the technology of micro-fabrication and anodic oxidation is adopted. Microgrooves and nano-porous heat transfer surfaces with different sizes were prepared and the heat transfer characteristics of various surfaces were studied. The results show that the morphology of nano-porous surface will be different under different anodizing conditions, which will affect the heat transfer performance of nano-porous surface. In this paper, with oxalic acid as electrolyte and controlling temperature at 40V 10oC voltage, nano-porous films with about 80nm pore size and array distribution can be successfully prepared. With phosphoric acid as electrolyte, the diameter of nano-pore increases to about 200nm when the temperature is controlled at 85V of 10oC, and there is fusion crosslinking between pore and pore. The existence of nano-pores can be used as the core of vaporization on the one hand, and increase the heat transfer area on the other. The experimental results of heat transfer on nano-porous surface show that the bubble with small diameter and high frequency has higher heat transfer coefficient, especially at high heat flux, the enhancement effect of heat transfer is more obvious. Compared with the surface of the microgroove group, the heat transfer coefficient is smaller when the heat flux is relatively low, and the heat transfer coefficient increases rapidly with the increase of the heat flux. In order to improve the critical heat flux, the surface of micro-nano composite structure is proposed in this paper. The experimental results show that the surface heat transfer effect of micro / nano composite structure is better than that of nano porous surface and micro groove group surface. Under the same experimental conditions, the heat transfer coefficient is twice that of the smooth surface.
【学位授予单位】:河北工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TK124

【相似文献】

相关期刊论文 前10条

1 张贵勤;高热流密度电加热元件[J];核动力工程;1989年06期

2 杨敏林;杨晓西;杨小平;丁静;沈向阳;;高温高热流密度熔盐吸热管传热试验研究[J];华北电力大学学报(自然科学版);2009年01期

3 韩鹏,叶晓虎,陈熙;高热流密度量热探针的设计与实验[J];燃烧科学与技术;1999年04期

4 莫冬传;吕树申;金积德;;高热流密度均温板的传热特性实验研究[J];工程热物理学报;2008年02期

5 诸凯;田金颖;刘建林;杨爱;;高热流密度器件热控制实验研究[J];工程热物理学报;2009年10期

6 万忠民;刘靖;陈敏;管琼;涂正凯;;高热流密度散热的多孔微热沉流动与传热实验研究[J];中国电机工程学报;2011年29期

7 赵忠超;叶锐;陈育平;周根明;;高热流密度电子器件冷却用热管散热器传热性能的红外成像研究[J];江苏科技大学学报(自然科学版);2012年01期

8 黄大革;杨双根;;高热流密度电子设备散热技术[J];流体机械;2006年09期

9 刘明艳;徐向华;梁新刚;;高热流密度下矩形微小通道对流换热的模拟与优化[J];工程热物理学报;2010年04期

10 王宏;余勇胜;朱恂;孙少鹏;廖强;丁玉栋;杨宝海;;氨饱和压力对喷雾相变冷却特性的影响[J];中国激光;2011年07期

相关会议论文 前1条

1 王姗姗;舒水明;;小空间高热流密度激光晶体的相变冷却及数值模拟[A];第九届全国低温工程大会论文集[C];2009年

相关硕士学位论文 前9条

1 左少华;纳米多孔表面高热流密度下传热特性研究[D];河北工业大学;2015年

2 夏平;高热流密度传热试验系统的开发与研究[D];浙江大学;2012年

3 王姗姗;高热流密度电子器件相变冷却结构优化与特性模拟[D];华中科技大学;2008年

4 孙少鹏;高热流密度电子元件喷雾相变冷却系统的研究[D];重庆大学;2010年

5 唐占文;高热流密度航天器精确热分析方法研究[D];哈尔滨工业大学;2008年

6 刘明艳;微小通道与射流相结合的高热流密度热沉结构的数值模拟[D];清华大学;2010年

7 贺高明;应用于高热流密度散热的吸热反应数值模拟与实验研究[D];华南理工大学;2014年

8 王冠英;大功率高热流密度电子冷却系统的设计与研究[D];合肥工业大学;2013年

9 史光;毛细抽吸两相循环系统设计分析与实验研究[D];华中科技大学;2007年



本文编号:2344167

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dongligc/2344167.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户839b1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com