超磁致伸缩液压泵驱动器设计及其在折叠机翼变体飞行器中的应用
发布时间:2018-03-30 14:46
本文选题:超磁致伸缩 切入点:液压泵 出处:《哈尔滨工业大学》2015年硕士论文
【摘要】:随着航空技术的发展,人们对传统布局方式的飞行器提出了越来越多的新要求。国内外的研究人员已经开始逐步探索研发具有结构自适应性的新概念飞行器,使飞行器按照不同任务载荷的要求能够在不同飞行环境下,通过结构变形始终保持良好的气动性能和飞行状态,由此,变体飞行器应运而生。折叠机翼变体飞行器作为一种大变形变体飞行器,其对驱动变形的方式提出了新的更高的要求。另一方面,作为一种新型智能材料,超磁致伸缩材料以其较大的磁致伸缩应变、大输出应力、快速响应和高能量转换效率等特点,被越来越多的研究者所关注。以超磁致伸缩材料为动力元件,利用上述特性而研制的许多致动器,使得航空航天、精密加工、机器人等领域对设备在体积小、重量轻、易于控制等方面的诸多要求得以满足。通过对超磁致伸缩材料的诸多优势加以利用,考虑将其与液压系统作动力大且传动可靠等优点相结合,研制一种新型超磁致伸缩液压泵驱动器,并以此为液压动力单元,构建完整的液压系统设计方案,用以驱动折叠机翼变体飞行器实现折叠变形,这便是本文的主要思想。首先,本文论述了基于超磁致伸缩材料的液压泵驱动器的工作原理,并应用力学、材料学、电磁学和机械设计等相关理论,设计和制作了这种驱动器,并对其性能做了全面测试,详细分析了输出流量和输出压力分别与输入电信号电流、频率、偏置情况以及液压系统预充压这四组参数之间的关系。其次,根据超磁致伸缩液压泵的设计特点和测试结果,本文详细设计了摇杆机构传动和螺旋传动这两种传动方式下的折叠机翼变体飞机机身和各翼段机翼结构,全面考察折叠机翼变体飞机的结构布局方案和特点,并建立了摇杆机构传动的折叠机翼变体飞机的运动学模型,与CATIA数字样机DMU运动分析的仿真结果相互验证。最后,利用ADAMS等软件对飞机结构模型进行无负载条件下的动力学仿真,得到此时满足变形要求的驱动力的大小;设计了以GMM泵驱动器为动力源的驱动折叠变形的液压系统布局方案,并以选用GMM泵测试结果的典型值与上述仿真结果进行对比,验证了液压布局方案实际应用的可行性。
[Abstract]:With the development of aeronautical technology, more and more new requirements have been put forward for aircraft with traditional layout. Researchers at home and abroad have begun to explore and develop new concept aircraft with adaptive structure. According to the requirements of different mission loads, the aircraft can always maintain good aerodynamic performance and flight state through structural deformation in different flight environments. The folding wing variant aircraft, as a kind of large deformation variant vehicle, has put forward new and higher requirements for the mode of driving deformation. On the other hand, as a new kind of intelligent material, Giant magnetostrictive materials have attracted more and more attention due to their large magnetostrictive strain, large output stress, fast response and high energy conversion efficiency. Many actuators have been developed using the above characteristics, which make the equipments in the fields of aerospace, precision machining, robot and so on small in size and light in weight. By utilizing the advantages of giant magnetostrictive materials, we consider combining them with the advantages of high power and reliable transmission of hydraulic systems. A new type of giant magnetostrictive hydraulic pump driver is developed and used as a hydraulic power unit to construct a complete hydraulic system design scheme to drive the folding deformation of the folding wing variant aircraft. This is the main idea of this paper. In this paper, the working principle of hydraulic pump driver based on giant magnetostrictive material is discussed, and the mechanical, material, electromagnetism and mechanical design theories are applied to design and fabricate the actuator, and its performance is tested. The relationship between the output flow rate and output pressure and the input electric current, frequency, bias and pre-charging pressure of hydraulic system are analyzed in detail. Secondly, according to the design characteristics and test results of the giant magnetostrictive hydraulic pump, In this paper, the fuselage and the wing structure of each wing segment of the folding wing variant aircraft under the two transmission modes of rocker mechanism transmission and helical transmission are designed in detail, and the structural layout scheme and characteristics of the folded wing variant aircraft are comprehensively investigated. The kinematics model of the folding wing variant aircraft driven by rocker mechanism is established, and the simulation results of DMU motion analysis of CATIA digital prototype are verified. Finally, The dynamic simulation of aircraft structure model without load is carried out by using ADAMS and other software, and the magnitude of driving force to meet the requirements of deformation is obtained, and the hydraulic system layout scheme of driving folding deformation with GMM pump driver as power source is designed. The feasibility of practical application of the hydraulic layout scheme is verified by comparing the typical values of the test results of GMM pump with the simulation results mentioned above.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:V241
【参考文献】
相关期刊论文 前6条
1 陆宇平;何真;吕毅;;变体飞行器技术[J];航空制造技术;2008年22期
2 杨超云;;基于CATIA V5的零件参数化设计及运动仿真[J];汽车零部件;2011年06期
3 李毅;杨智春;;折叠翼飞行器机翼折叠过程的颤振仿真分析[J];系统仿真学报;2009年22期
4 张旭辉;刘永光;付永领;;磁致伸缩作动器结构优化设计[J];压电与声光;2009年03期
5 张天飞;汪鸿振;孙曜;;超磁致伸缩作动器用于振动主动控制中的仿真研究[J];振动与冲击;2006年01期
6 郭东明,杨兴,贾振元,武丹;超磁致伸缩执行器在机电工程中的应用研究现状[J];中国机械工程;2001年06期
相关硕士学位论文 前1条
1 庄知龙;基于CFD的变体飞行器变形过程气动特性及控制问题研究[D];南京航空航天大学;2012年
,本文编号:1686378
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/1686378.html