火星大气进入轨迹制导与姿态控制方法研究
发布时间:2018-04-26 02:29
本文选题:火星 + 大气进入 ; 参考:《北京理工大学》2015年硕士论文
【摘要】:未来的火星探测任务,要求探测器具有在特定区域精确着陆的能力。大气进入段是火星着陆过程环境最恶劣的阶段,探测器的制导与控制不仅直接影响开伞点的精度,对探测器的最终着陆精度乃至任务的成败也将产生重要影响。本论文以火星精确着陆探测任务为背景,针对火星大气进入段的探测器制导与姿态控制问题,研究了大气进入段轨迹优化方法以及制导与姿态控制方法,并进行了数值仿真与分析。首先,对火星的动力学环境参数进行了分析;给出了火星大气进入段相关坐标系及转换关系,进而推导并建立了火星大气进入段的轨道动力学和姿态动力学模型,为进入段轨迹优化与制导控制方法研究提供基础。其次,考虑进入段轨道动力学模型,给出了火星大气进入段受到的各类约束,并通过约束规范化改进Gauss伪谱法,对火星进入段轨迹进行优化设计。以倾侧角为控制量,求解满足各约束条件的最优参考轨迹,然后,采用阿波罗式的ETPC摄动制导律,对优化的轨迹进行了跟踪控制仿真,并对仿真结果进行了分析。然后,针对采用质心偏置的方式来获得有限升力的低升阻比火星探测着陆器,考虑火星进入大气环境的复杂多变性,采用能量作为变量,以减小开伞点误差和增加开伞高度为目标,研究了一种基于参数修正PID反馈-自适应增益的预测跟踪火星大气进入制导律,分别对该方法的预测、纵向和横向制导律进行了设计,并通过数值仿真验证了方法的有效性。最后,针对火星大气进入段姿态控制问题,给出了姿态控制相平面姿态分析方法。研究并给出了基于相平面分析的俯仰/偏航通道PD/D稳定控制律和滚转通道时间-燃料最优机动控制律,仿真分析验证了方法的有效性。
[Abstract]:Future missions to Mars will require the spacecraft to land accurately in a particular area. The atmospheric entry section is the worst stage of the Martian landing environment. The guidance and control of the spacecraft not only directly affect the accuracy of the parachute opening point, but also have an important impact on the final landing accuracy of the spacecraft and the success or failure of the mission. In this paper, based on the precise landing mission of Mars, aiming at the guidance and attitude control of the Mars atmosphere, the trajectory optimization method and the guidance and attitude control method of the atmospheric entry section are studied. Numerical simulation and analysis are carried out. First of all, the dynamic environment parameters of Mars are analyzed, and the relative coordinate system and the transformation relation are given, and then the orbital dynamics and attitude dynamics model of Mars atmospheric entry section are derived and established. It provides the foundation for the research of trajectory optimization and guidance control. Secondly, considering the orbital dynamics model of the entry phase, the various constraints on the entry segment of the Mars atmosphere are given, and the trajectory of the entry segment of Mars is optimized by the improved Gauss pseudospectral method of constraint normalization. The optimal reference trajectory satisfying each constraint condition is solved with the tilting angle as the control quantity. Then, the tracking control simulation of the optimized trajectory is carried out by using the ETPC perturbation guidance law of Apollo, and the simulation results are analyzed. Then, considering the complex variability of Mars entering the atmospheric environment, considering the complex variability of Mars entering the atmospheric environment, the energy is used as a variable for the low lift Mars probe lander, which uses the centroid bias to obtain a finite lift. In order to reduce the error of opening point and increase the height of the parachute, a predictive tracking guidance law based on parameter-modified PID feedback and adaptive gain for Mars atmospheric entry guidance is studied. Longitudinal and transverse guidance laws are designed, and the effectiveness of the method is verified by numerical simulation. Finally, aiming at the problem of attitude control in Martian atmosphere, a phase plane attitude analysis method for attitude control is presented. The PD/D stability control law and the time-fuel optimal maneuvering control law for pitch / yaw channel based on phase plane analysis are studied and presented. The simulation results show that the method is effective.
【学位授予单位】:北京理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:V448.2
【参考文献】
相关期刊论文 前3条
1 王永平;载人飞船的制导、导航与控制技术探讨[J];导弹与航天运载技术;1994年05期
2 刘强,扈宏杰,刘金琨,尔联洁;高精度飞行仿真转台的鲁棒自适应控制[J];系统工程与电子技术;2001年10期
3 胡庆雷;马广富;;带有输入非线性的挠性航天器姿态机动变结构控制[J];宇航学报;2006年04期
,本文编号:1804087
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/1804087.html