ADS-B导航信号源及自主式防欺骗技术研究
发布时间:2018-05-05 04:43
本文选题:广播式自动相关监视 + 备用导航源 ; 参考:《中国民航大学》2015年硕士论文
【摘要】:美国联邦航空局(FAA)认为ADS-B作为一种全新的监视技术,是实施自由飞行的基石,其主要功能(ADS-B、交通情报服务广播(TIS-B)、飞行情报服务广播(FIS-B))可以在监视、防撞、辅助进近上发挥重要作用。同时国产C919大飞机上也已确定安装ADS-B相关产品。但现阶段ADS-B水平导航源仅采用全球导航卫星系统(GNSS),当卫星发生故障时,会出现监视失效的问题,且ADS-B报文开放共享式的特点导致其易受虚假欺骗。因此,研究ADS-B备用导航源和防欺骗技术有着极为重要的意义。本文首先对ADS-B的基本原理做了介绍,在报文内容和接收报告部分做了较为详尽的阐述。随后对基于ADS-B的备用导航源与防欺骗技术进行了深入研究,所做的工作主要有以下几个方面:1)从间隔误差概率分析的角度考虑,给出适合基于所需性能导航(RNP)的导航源的ADS-B导航源精度和完好性标准。同时针对测距机(DME)这类RNP导航源时在精度和完好性方面无法满足当前标准的问题,提出一些对于导航完好性类别(NIC)和导航精度类别(NACp)编码的改变建议。实现DME/DME导航源实用最大化,使基于DME/DME的RNP备用导航源符合5nm间隔实施标准。2)ADS-B防欺骗系统的接收前端,将盲信号分离算法应用到ADS-B 1090 ES信号分离上。采用FastICA算法进行混叠信号分离,最后通过信号的相关系数判断信号分离效果。3)ADS-B防欺骗系统最重要的部分是在利用下行ADS-B信号进行定位以剔除虚假信号。采用新型到达时间差(TDOA)与到达时间和(TSOA)定位模型,探索常规定位算法下该新型混合定位模型和常规TDOA定位模型的定位性能。同时对传统Taylor级数算法做了改进优化,给出了利用Friedlander算法结果作为Taylor级数算法的初始迭代值的改进算法,解决其因初始值选择而导致的算法可能不收敛或者误差增大的情况。最后分析传统Taylor级数算法与改进Taylor级数算法在不同定位模型下的定位性能,且讨论了基站数量对定位性能的影响。通过定位算法的结果与ADS-B信号解码出来的位置信息比对,实现了ADS-B系统防欺骗。
[Abstract]:FAA holds that ADS-B, as a new surveillance technology, is the cornerstone of free flight, and its main function is ADS-B, TIS-BN, FIS-BN), which can be used to monitor and prevent collisions. Auxiliary approach plays an important role. At the same time, the domestic C 919 aircraft has also confirmed the installation of ADS-B related products. However, at present, the ADS-B horizontal navigation source only uses the GNSS satellite system. When the satellite fails, there will be the problem of monitoring failure, and the characteristics of open and shared ADS-B packets make it vulnerable to false deception. Therefore, it is of great significance to study the ADS-B standby navigation source and anti-spoofing technology. In this paper, the basic principle of ADS-B is introduced, and the message content and receiving report are described in detail. Then, the backup navigation source and anti-deception technology based on ADS-B are deeply studied. The main work is as follows: 1) considering from the angle of probability analysis of interval error, The standard of accuracy and completeness of ADS-B navigation source suitable for navigation source based on required performance is given. At the same time, aiming at the problem that the accuracy and completeness of the RNP navigation source can not meet the current standard, some suggestions for the improvement of the navigation integrity class and the navigation accuracy class are put forward. The DME/DME navigation source is maximized, and the RNP standby navigation source based on DME/DME meets the 5nm interval implementation standard. 2. The blind signal separation algorithm is applied to the ADS-B 1090 es signal separation. The FastICA algorithm is used to separate the aliasing signals. Finally, the most important part of the anti-deception system of ADS-B is to use the downlink ADS-B signal to locate and eliminate the false signals by judging the signal separation effect by correlation coefficient of the signal. A new time-of-arrival (TDOA) and time of arrival (TSOA) localization model is used to explore the localization performance of the new hybrid localization model and the conventional TDOA location model under the conventional localization algorithm. At the same time, the traditional Taylor series algorithm is improved and optimized, and an improved algorithm using the results of the Friedlander algorithm as the initial iteration value of the Taylor series algorithm is given to solve the problem that the algorithm may not converge or the error increases due to the selection of the initial value. Finally, the localization performance of the traditional Taylor series algorithm and the improved Taylor series algorithm under different location models is analyzed, and the influence of the number of base stations on the location performance is discussed. By comparing the result of the localization algorithm with the position information decoded by ADS-B signal, the anti-deception of ADS-B system is realized.
【学位授予单位】:中国民航大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:V351.37
【参考文献】
相关期刊论文 前10条
1 李敏;王帮峰;丁萌;;ADS-B在机场场面监视中的应用研究[J];中国民航飞行学院学报;2014年01期
2 王洪;黄荣顺;徐自励;;多点定位中A/C模式混叠信号的时域分离算法[J];电子科技大学学报;2013年06期
3 宋劲;;一种ADS-B信号真伪验证方法的设计[J];中国西部科技;2013年06期
4 刘翔;宋常建;胡磊;钟子发;;一种非视距环境下的椭圆-双曲线混合被动定位技术[J];电路与系统学报;2013年02期
5 戴超成;肖刚;敬忠良;;采用ADS-B的冲突飞机选择算法[J];电光与控制;2011年10期
6 宋祺;杨承志;孙鑫;;基于FastICA的雷达信号分选研究[J];现代电子技术;2010年15期
7 何桂萍;徐亚军;;ADS-B数据链的比较及特性研究[J];中国民航飞行学院学报;2010年04期
8 王洪;刘昌忠;汪学刚;吴宏刚;;多点定位混叠信号的盲分离[J];电讯技术;2009年12期
9 李自俊;;ADS-B广播式自动相关监视原理及未来的发展和应用[J];中国民航飞行学院学报;2008年05期
10 吕茂辉;陈志杰;;自动相关监视目标的跟踪算法研究[J];无线电工程;2008年01期
,本文编号:1846272
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/1846272.html