四旋翼飞行器姿态控制及轨迹规划的研究
发布时间:2018-05-17 12:23
本文选题:四旋翼飞行器 + 姿态控制 ; 参考:《北京理工大学》2016年硕士论文
【摘要】:本课题以四旋翼飞行器为对象,围绕其姿态控制、最优轨迹生成以及跟踪控制器设计展开研究,搭建了飞行控制实验平台,研究了自抗扰技术在姿态控制算法,微分平坦理论在最优轨迹生成及跟踪控制器设计中的运用,并进行了相关实验,主要研究内容包括以下四个方面:首先,分别介绍了不同的空间飞行器姿态描述方法,研究了不同坐标系之间的转换关系,根据运动学和动力学方程推导了四旋翼飞行器的非线性数学模型。然后,研究了自抗扰控制技术在四旋翼飞行器姿态控制中的解耦控制方法。分别研究了微分跟踪器、扩张状态观测器、非线性反馈控制律,设计了虚拟控制量,三个通道形成了解耦控制器,并进行仿真实验。其次,研究了微分平坦理论在四旋翼飞行器最优轨迹生成中的应用,提出了基于微分平坦理论的轨迹规划算法。通过对欧拉-拉格朗日模型进行坐标变换,引入虚拟控制量,得到了更为简约的系统动态模型,证明了系统的平坦属性,同时避免了控制奇点。通过利用平坦属性和反馈线性化,设计了轨迹跟踪控制器,能够驱动四旋翼飞飞行器快速跟踪生成的参考轨迹。参考轨迹可以通过解含有约束的最优问题得到。同时,对跟踪控制器和参考轨迹的生成进行了仿真。最后,按照飞行控制模块、航姿检测模块、动力模块和通信模块的顺序进行了硬件系统的搭建,分析了各个模块的功能和选型依据。同时,对四旋翼飞行器的硬件和整体系统的最后调试,完成试验平台的搭建工作。进行了悬停试验和遥控试验,通过分析采集的飞行数据,验证了试验平台的可行性和控制算法的有效性。
[Abstract]:Based on the attitude control, optimal trajectory generation and tracking controller design, a flight control experimental platform is built, and an active disturbance rejection algorithm is studied. The application of differential flatness theory in the design of optimal trajectory generation and tracking controller is carried out. The main research contents include the following four aspects: firstly, different attitude description methods of space vehicle are introduced respectively. Based on the kinematics and dynamics equations, the nonlinear mathematical model of four rotors is derived. Then, the decoupling control method of active disturbance rejection control (ADRC) in attitude control of four rotors is studied. The differential tracker the extended state observer and the nonlinear feedback control law are studied respectively. The virtual control quantity is designed and the decoupling controller is formed by the three channels and the simulation experiment is carried out. Secondly, the application of differential flatness theory to optimal trajectory generation of four-rotor aircraft is studied, and a trajectory planning algorithm based on differential flatness theory is proposed. By the coordinate transformation of Euler-Lagrange model and the introduction of virtual control quantity, a more simplified dynamic model of the system is obtained, and the flat property of the system is proved, while the control singularity is avoided. By using flatness and feedback linearization, a trajectory tracking controller is designed, which can drive the four-rotor flight vehicle to track the generated reference trajectory quickly. The reference trajectory can be obtained by solving the optimal problem with constraints. At the same time, the generation of tracking controller and reference trajectory is simulated. Finally, according to the sequence of flight control module, attitude detection module, power module and communication module, the hardware system is built, and the function and selection basis of each module are analyzed. At the same time, the final debugging of the hardware and the whole system of the four-rotor aircraft is carried out, and the construction of the test platform is completed. The hovering test and remote control test are carried out. The feasibility of the test platform and the validity of the control algorithm are verified by analyzing the collected flight data.
【学位授予单位】:北京理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:V249
【相似文献】
相关期刊论文 前10条
1 宋亚平;浅谈旋翼的防腐维护[J];航空维修与工程;2004年04期
2 _5^懔,
本文编号:1901354
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/1901354.html