四旋翼飞行器飞行控制系统的设计与实现
本文选题:四旋翼飞行器 + 姿态解算 ; 参考:《大连理工大学》2012年硕士论文
【摘要】:四旋翼飞行器是一种结构简单、可垂直起降的、多旋翼式飞行器,特别适合在近地面环境执行搜寻和侦查任务,在民用和军事领域都有着广泛的应用前景。本文主要讨论了四旋翼飞行器的飞行系统控制和实现。首先,四旋翼飞行器是一种六自由度的四个输入力,六个输出的欠驱动系统(欠驱动系统是指少输入多输出系统)。它的前后和左右两组螺旋桨的转动方向相反,并且通过改变螺旋桨速度来改变升力,进而改变四旋翼飞行器的姿态和位置。 本文在综述四旋翼飞行器的发展历史和国内外研究现状的基础上,总结了四旋翼飞行器的研究意义和关键技术。综合自己的特长和现有的技术,对四旋翼飞行器的飞行控制系统硬件设计和软件设计实现。 而硬件设计又分为四部分:姿态测量模块,飞行控制模块,无刷电机控制,以及上位机控制模块。而内部的姿态传感器数据将使用开源网站上的姿态解算AHRS(自动航向基准系统)四元数(最简单的超复数)原理,单独用一块ARM的STM32电路板接收姿态传感器IMU6050(3轴加速度计和3轴陀螺仪的整合惯导系统)芯片,3轴电子罗盘芯片,以及电子气压高度计共10轴的数据信息,然后进行数据融合处理,最后将原始接收的数据计算得到飞行器的航向角,俯仰角,横滚角,再发送给姿态控制电路板进行控制。而飞行控制模块也是用ARM的STM32接收姿态解算信息后,通过PID控制算法解算后,得到各个旋翼转速值,再传输给无刷电调模块,控制电机转速。而飞行器控制模块,是在AVR(ATMEL公司AVR微控制器)MCU (Micro Control Unit)上基于脉冲宽度调制(PWM:Pulse Width Modulation)的无刷电机控制,电机主要是通过I2C (Inter—Integrated Circuit即12C)接收飞行器控制板传输来的飞行控制电机转速控制信号,并将信号转换成PWM来控制电机转速。 软件设计是在对四旋翼飞行器的动力学模型上的构建后,对四旋翼飞行器进行位置PID控制和姿态PID控制,最后结合软件设计来实现。
[Abstract]:Four-rotor aircraft is a kind of simple structure, vertical take-off and landing, multi-rotor aircraft, especially suitable for the near ground environment to carry out search and reconnaissance missions, and has a wide range of application prospects in both civil and military fields. This paper mainly discusses the flight system control and realization of four-rotor aircraft. First of all, a four-rotor aircraft is a six-degree-of-freedom system with four input forces and six output underactuated systems (the under-drive system refers to a system with less input and more outputs). The direction of rotation of the propeller is opposite to that of the two groups of propellers, and the lift force is changed by changing the speed of the propeller, and then the attitude and position of the four-rotor aircraft are changed. On the basis of summarizing the history of the development of the four-rotor aircraft and the present research situation at home and abroad, the research significance and key technology of the four-rotor aircraft are summarized in this paper. The hardware design and software design of the flight control system of the four-rotor aircraft are realized by integrating their own specialties and existing technologies. The hardware design is divided into four parts: attitude measurement module, flight control module, brushless motor control, and upper computer control module. The internal attitude sensor data will use the AHRS quaternion (the simplest hyperplural) principle from an open source Web site. A single ARM STM32 circuit board is used to receive 3-axis electronic compass chip of attitude sensor IMU6050(3 axis accelerometer and 3-axis gyroscope integrated inertial navigation system, as well as 10-axis data information of electronic barometric altimeter. Then the data fusion process is carried out. Finally, the course angle, pitch angle and roll angle of the aircraft are calculated by the original received data, and then sent to the attitude control circuit board for control. The flight control module also receives the attitude solution information with the STM32 of ARM, obtains the rotational speed of each rotor by PID control algorithm, and then transfers it to the brushless electric adjustment module to control the motor speed. The aircraft control module is a brushless motor control system based on pulse width modulation (PWM: pulse Width Modulation) on AVR(ATMEL AVR Micro Control Unit. The motor mainly receives the flight control motor speed control signal transmitted by the aircraft control board through I2C Inter-Integrated Circuit (12C) and converts the signal into PWM to control the motor speed. The software design is based on the construction of the dynamic model of the four-rotor aircraft, then the position PID control and the attitude PID control of the four-rotor aircraft are carried out. Finally, the software design is combined with the software design to realize the position control and attitude PID control.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:V249.1
【参考文献】
相关期刊论文 前10条
1 聂博文;马宏绪;王剑;王建文;;微小型四旋翼飞行器的研究现状与关键技术[J];电光与控制;2007年06期
2 岳基隆;张庆杰;朱华勇;;微小型四旋翼无人机研究进展及关键技术浅析[J];电光与控制;2010年10期
3 杜晓芸,林瑞光,吴建华;无位置传感器无刷直流电机的控制策略[J];电机与控制学报;2002年01期
4 任平一,陈娟,王宏志,侯云海;直流PWM功放驱动模式的研究[J];光机电信息;2004年07期
5 周建军,陈超,崔麦会;无人直升机的发展及其军事应用[J];航空科学技术;2003年01期
6 冯培悌,舒振杰,郑吉,陈西玉;永磁无刷直流电机的无位置传感器控制技术[J];机电一体化;2001年05期
7 钟舜聪,李升平,孙智娟;基于回路成形法的鲁棒控制器设计[J];汕头大学学报(自然科学版);2000年02期
8 傅彩芬,谭文,刘吉臻;基于回路成形的鲁棒增益调度控制器设计[J];信息与控制;2005年02期
9 付敬奇;智能磁方位传感器设计[J];仪器仪表学报;2004年S2期
10 陈义华;王凌云;孙道恒;;基于MEMS技术的微型惯性测量组合[J];自动化博览;2005年S2期
相关硕士学位论文 前2条
1 李航;小型四旋翼飞行器实时控制系统研究[D];大连理工大学;2010年
2 杨明志;四旋翼飞行器自动驾驶仪设计[D];南京航空航天大学;2008年
,本文编号:1914549
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/1914549.html