基于CAN总线的气压高度表研制
本文选题:高精度 + 实时自校准 ; 参考:《西安电子科技大学》2015年硕士论文
【摘要】:气压高度表用于向载体提供准确的高度数据,是一种重要的航空仪表。航空航天事业的日益发展使得智能化成为航空仪表的发展趋势,因此,气压高度表正在向体积小、重量轻,具备数字总线方向发展。论文首先对气压高度表的概念和发展趋势进行了介绍,分别对气压高度表小型化、高精度、高可靠性和环境适应性的设计需求进行了论述,确定了课题研究的基本方向;论述了航空应用中气压高度测量基本原理,根据北半球标准大气参数表,研究并建立了气压到的解算关系式,同时兼顾单片机硬件平台设计合适的简化算法模型。并对其解算误差进行了分析,提出以MSC1201高性能混合集成微控制器为硬件核心的整体设计;随后,对系统组成各模块的硬件电路和软件设计进行了详细设计和分析。硬件设计采用模块化设计,各功能模块之间相对独立,方便测试维护,和故障排查。对系统中电源模块,压力传感器模块,微控制器模块,CAN总线通信模块等功能模块单元的硬件元件选型和电路设计进行详细说明,并对系统抗干扰和电磁兼容性设计进行了详细设计和分析。CAN总线气压高度表的软件设计采用Keil C编译环境,汇编C语言代码编写。软件设计针对功能需求,将软件划分成不同功能单元,进行模块化标准化设计。分别对A/D转换模块,压力信号校准模块,气压高度解算模块和CAN总线通信模块等功能模块的软件设计流程和方法进行了介绍;最后,在实验室条件下对CAN总线气压高度表工程样机进行试验测试,将测试结果与理论值比较并分析测量系统的误差来源。本文针对无人机应用特点,开发了一种基于CAN总线的气压高度表。完成了两项关键技术的研究:1.研究了压力传感器专用调理芯片PGA309进行补偿校准的数学模型,完成了其在MSC1201微控制器平台上的移植,实现了压力传感器温度附加误差和非线性误差的高精度补偿。2.研究了大气压力与标准海平面高度的关系函数,使用最小二乘法和线性插值法实现了适应于单片机处理的解算算法,并且保证了计算结果的误差范围本文的研究成果具有一定的通用性,对小型化,集成化的智能传感器、仪表设计研究有借鉴意义。
[Abstract]:Barometric altimeter is an important aeronautical instrument which is used to provide accurate height data to carrier. With the development of aerospace industry, intelligence becomes the development trend of aeronautical instruments. Therefore, barometric altimeters are developing towards small volume, light weight and digital bus. Firstly, the concept and development trend of barometric altimeter are introduced, and the design requirements of barometric altimeter such as miniaturization, high precision, high reliability and environmental adaptability are discussed respectively, and the basic research direction is determined. In this paper, the basic principle of air pressure height measurement in aviation application is discussed. According to the standard atmospheric parameter table of the Northern Hemisphere, the relationship between air pressure and air pressure is studied and established. At the same time, a suitable simplified algorithm model is designed on the hardware platform of single chip computer. The calculation error is analyzed, and the hardware core of MSC1201 hybrid integrated microcontroller is proposed. Then, the hardware circuit and software design of each module of the system are designed and analyzed in detail. The hardware design adopts modular design, each functional module is relatively independent, easy to test and maintain, and troubleshooting. The selection of hardware components and circuit design of the function modules such as power supply module, pressure sensor module, microcontroller module and can bus communication module are described in detail. The system anti-jamming and EMC design are designed and analyzed in detail. The software design of the can bus barometric altimeter is compiled in Keil C and compiled in C language. According to the functional requirements, the software is divided into different functional units and standardized modular design. The software design flow and methods of A- / D conversion module, pressure signal calibration module, barometric height calculation module and CAN bus communication module are introduced respectively. The CAN bus barometric altimeter engineering prototype was tested under laboratory conditions. The test results were compared with the theoretical values and the error sources of the measurement system were analyzed. In this paper, a barometric altimeter based on CAN bus is developed according to the characteristics of UAV application. Two key technologies have been studied: 1. The mathematical model of compensating and calibrating the pressure sensor special conditioning chip PGA309 is studied. The transplant of it on the platform of MSC1201 microcontroller is completed, and the high precision compensation of temperature additional error and nonlinear error of pressure sensor is realized. The relation function between atmospheric pressure and standard sea level height is studied. The least square method and linear interpolation method are used to realize the calculation algorithm suitable for single chip processor processing. And the error range of the calculation result is guaranteed the research result of this paper has certain generality, and has the reference significance to the miniaturization, the integration intelligent sensor, the instrument design research.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:V241.421
【相似文献】
相关期刊论文 前10条
1 吴红兰;黄圣国;;嵌入式高精度气压高度表的误差补偿研究[J];哈尔滨商业大学学报(自然科学版);2010年04期
2 畅世聪,李建英;气压高度表及其校准方法[J];气象水文海洋仪器;2002年02期
3 郝振海;黄圣国;;高精度气压高度表的研制[J];南京航空航天大学学报;2009年01期
4 党玮 ,黄圣国;数字式气压高度表的设计[J];测控技术;2004年12期
5 崔保健;赵海鹰;;基于压力控制器的气压高度表自动检定系统[J];计测技术;2009年03期
6 张正明,杨绍全;气压高度表模拟器的研究[J];电子科技;1997年03期
7 王进,高钟毓;惯性测量系统高度通道中的零速修正及与气压高度表的组合[J];中国惯性技术学报;1995年01期
8 毛欣;;运用6σ管理提高飞机气压高度表的可靠性水平[J];电子质量;2006年03期
9 竺明超;黄圣国;;一种气压高度表辅助GPS定位算法的研究[J];哈尔滨商业大学学报(自然科学版);2009年04期
10 陈家斌,袁信;气压高度表辅助下GPS接收机自备完善性监测可用性研究[J];航空学报;1996年05期
相关会议论文 前1条
1 李楠;周强;;面向车载试验应用的气压高度表系统设计与研究[A];第十九届测控、计量、仪器仪表学术年会(MCMI'2009)论文集[C];2009年
相关硕士学位论文 前5条
1 李本亮;基于CAN总线的气压高度表研制[D];西安电子科技大学;2015年
2 张s,
本文编号:1918077
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/1918077.html