无人机飞行路线控制系统设计
发布时间:2018-05-27 03:28
本文选题:BD2/GPS + GPRS ; 参考:《成都理工大学》2016年硕士论文
【摘要】:由于无人机是通过无线遥控的方式完成自动飞行和执行各种任务,具有安全零伤亡、低能耗、重复利用率高、控制方便等优点,因此得到了各个国家、各行各业的高度重视和广泛应用。尤其以美国为代表,无论是在军事、民用、环境保护还是科学研究中,都将无人机的使用发挥到淋漓尽致,其拥有全球最先进的“捕食者”和“全球鹰”战斗无人机、监测鸟类的“大乌鸦”无人机、民用用途的“伊哈纳”无人机等等。我国在无人机研制方面也取得了一定的成就,拥有技术卓越的“翔龙”和“暗箭”高空高速无人侦查机、多用途的“黔中”无人机、探测海洋的“天骄”无人机、中继通讯的“蜜蜂”无人机等等。在未来,随着现代化工业技术、信息技术、自动化技术、航天技术等高新技术的迅速发展,无人机技术将日趋成熟,性能日益完善,为此将拥有更为广阔的应用前景。为确保无人机能够有效地完成各种飞行任务,研发者开发了各种技术方式的飞行控制系统,完成对无人机的起飞、飞行控制、着陆以及相应目标任务等操作的控制。飞行路线控制是飞行控制系统中最基础也是最核心的功能控制部分,其它所有的飞行任务控制都是飞行路线控制的基础之上实现。目前对于无人机飞行路线的控制已有各种各样方式的系统,但大多数系统都存在一定缺陷,如有些系统操作过于繁杂,不够智能化;有些系统只能在视距范围遥控无人机,严重限制了无人机的使用;有些系统过于专用化,不能适用于大多数类型的无人机;有些比较完善的系统,造价又过于昂贵,等等一系列问题。针对以上存在的这些问题,本课题提出了一种成本低、遥控距离远、智能化、高效化、适用性广的无人机飞行路线控制系统设计方案。该系统方案包括两大部分,一部分是操作人员所处的地面监控系统,一部分是无人机端的受控系统,实现的机制主要是无人机不断地将自身的定位信息实时地传送给地面控制系统,地面控制系统将无人机位置信息通过电子地图可视化显示给操作人员,操作人员结合本次飞行任务,采用灵活的鼠标绘制方式在地图上绘制预定的飞行路线,地面控制系统对绘制路线进行自动处理生成可用的路线控制信息帧并发送给无人机受控系统,无人机受控系统接收到位置控制信息帧,不断结合实时的方位信息得到飞行控制信息,从而遥控无人机按照预定路线飞行。此外,为方便用户以后对历史数据的查看,以分析总结得到一些有价值的信息,地面监控系统还包含了对预定路线和无人机历史飞行路线的存储、查询和在地图中回放功能。基于GIS技术的地面监控系统的具体实现是在Windows操作系统上,采用Visual Basic作为系统开发环境并结合MSComm串口通信技术、Mapx二次开发组件技术、Winsock网络接口技术以及Access数据库技术完成软件设计,实现与无人机受控系统的无线通信、GIS系统操作和监控、历史数据存储和重现等,其中实验区域的电子地图采用Mapinfo Professional开发软件绘制完成,并创新性地设计并绘制了画面简洁的带高层信息的二点三维矢量地图,而对于绘制路线的优化和提取处理采用了垂距比值法和最小R值法。无人机端使用BDS-2/GPS双卫星系统对无人机实时位置进行高精度的定位,采用双串口单片机进行运算控制处理,实时的飞行控制信息采用了几何空间算法得到,另外采用LCD显示输出控制信息。空地两端系统的通信连接采用近距离的无线数传电台和远距离的GPRS两种通信技术结合的方式,实现广域环境下低费用的双向通信。对于本系统的研究意义主要体现在如下几个方面:(1)系统的硬件和软件设计都采用了模块化和接口化的设计,使得系统易于改进优化和扩展添加,在本系统的基础上能够很容易地嵌入其它任务控制系统,由此本系统具有广泛的适用性,可适用于各领域行业的无人机的飞行路线控制,如科学研究、军事训练、航空拍摄、电线巡查、农药喷洒等等;(2)既可通过地面控制系统的地图界面展现无人机实时定点位置,又可通过地图绘制预定飞行路线并遥控无人机按此路线飞行,还可以通过地图重现历史路线信息,实现监视、控制和查询于一体的多功能系统;(3)由于不再需要驾驶人员亲自驾驶无人机进行飞行,当需要飞往某些危险区域中执行飞行任务时,操作人员只需要安全地待在远处的地面监控中心便可清楚地监视和可靠地控制无人机飞行前进;(4)由于操作人员只需要呆在远处对无人机的飞行进行遥控,省去了驾驶人员的具体操作,从长远来看更加经济,并且繁琐的驾驶控制由系统高速的完成,提高了准确性和效率性;(5)监视和控制都具有较强的实时性,操作人员在任何时刻都可获取无人机的位置信息,并对飞行路线迅速做出控制或改动操作。
[Abstract]:Because unmanned aerial vehicle (UAV) can accomplish automatic flight and perform various tasks through wireless remote control, it has the advantages of safe zero casualties, low energy consumption, high reuse rate and convenient control. Therefore, the UAV has been highly valued and widely used in various countries and all walks of life, especially in military, civil, environmental protection, or environmental protection, especially in the United States. In scientific research, the use of UAVs is fully utilized, with the world's most advanced predators and Global Hawks fighting UAVs, the "big crows" UAVs of birds, the "Yi HNA" UAVs for civilian use, and so on. The more "Xianglong" and "dark arrow" high speed unmanned aerial surveillance machine, multi purpose "Guizhou" UAV, the exploration of the "Tianjiao" unmanned aerial vehicle of the ocean, the "bee" unmanned aerial vehicle of the relay communication and so on. In the future, with the rapid development of modern industrial technology, information technology, automation technology, space technology and other high-tech technology, unmanned machine technology In order to ensure that UAV can effectively complete various flight tasks, the researchers have developed a variety of technical flight control systems to complete the control of UAV takeoff, flight control, landing, and the corresponding target tasks. Control is the most basic and most core function control part of the flight control system. All other flight tasks control is based on the control of flight route. At present, there are various kinds of systems for the control of UAV flight route, but most of the systems have some defects, for example, some system operations are too high. It is complicated and unintelligentized; some systems can only remote control the UAV in the range of sight distance, which severely restrict the use of UAV; some systems are too specialized to apply to most types of UAV; some more perfect systems, cost too expensive, and so on. A design scheme of the UAV flight route control system with low cost, remote remote control distance, intelligent, efficient and widely applicable UAV flight route control system, which consists of two parts, part of the ground monitoring system in which the operator is located, and a part of the controlled system at the end of unmanned aircraft. The position information is transmitted to the ground control system in real time. The ground control system visualizations of the unmanned aerial vehicle position information through the electronic map to the operator. The operator combines the flight task and draws the predetermined flight route on the map with the flexible mouse drawing mode, and the ground control system automatically handles the drawing route. The available route is generated to control the information frame and send to the unmanned aerial vehicle controlled system. The unmanned aircraft controlled system receives the position control information frame, and continuously combines the real-time azimuth information to get the flight control information, thus the remote control unmanned aerial vehicle is flying in accordance with the scheduled route. In addition, the analysis and summary of the historical data for the convenience of the user after the user is analyzed and summarized. To some valuable information, the ground monitoring system also includes the storage, query and replay of the predetermined route and the UAV historical flight route. The concrete implementation of the ground monitoring system based on GIS technology is on the Windows operating system, using Visual Basic as the system development environment and combining with the MSComm serial communication technology. The operation, the Mapx two development component technology, the Winsock network interface technology and the Access database technology completed the software design, realized the wireless communication with the unmanned aerial vehicle controlled system, the operation and monitoring of the GIS system, the historical data storage and reappearance, among which the electronic map of the experimental area was completed by the Mapinfo Professional development software and was innovated. A simple two point 3D vector map with high level information is designed and drawn, and the vertical distance ratio method and the minimum R value method are used for the optimization and extraction of the drawing route. The unmanned aerial vehicle terminal uses BDS-2/GPS dual satellite system to locate the real time position of the unmanned aerial vehicle with high precision, and uses a double serial port single chip to carry out the operation control. The real-time flight control information is obtained by the geometric space algorithm, and the LCD display control information is used. The communication connection between the two ends of the air space system is combined with the near distance wireless digital radio and the remote GPRS two communication technologies to realize the two-way communication between the wide area and low cost. The research significance mainly embodies in the following aspects: (1) the design of hardware and software of the system has been designed with modularization and interface, which makes the system easy to improve and improve the optimization and extension, and can easily be embedded in other task control systems on the basis of this system, thus the system has extensive applicability and can be applied to the various leaders. The flight route control of the UAV in the domain industry, such as scientific research, military training, aerial photography, wire patrol, pesticide spraying, and so on. (2) it can not only display the real time fixed position of unmanned aerial vehicle through the map interface of the ground control system, but also can map the flight route by map and remote control unmanned aerial vehicle by this route, and can also pass the map A multi-functional system that reproduces historical route information to realize monitoring, control, and inquiry; (3) as no longer needs a driver to fly the UAV in person, and when it is necessary to fly to certain dangerous areas to perform a flight mission, the operator can be clearly monitored and dependable only in the distant ground monitoring center. Control unmanned aerial vehicle flight forward; (4) because the operator only needs to stay remote remote control of the UAV flight, it saves the specific operation of the driver, is more economical in the long run, and the tedious driving control is completed at high speed by the system, improves the accuracy and efficiency; (5) monitoring and control all have strong real time. The operator can obtain position information of UAV at any time, and control or alter operation of flight path quickly.
【学位授予单位】:成都理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:V279;V249
【参考文献】
相关期刊论文 前9条
1 王树源;;国外军用无人机发展现状与趋势[J];硅谷;2014年18期
2 朱超平;;电子地图制作方法与技术研究[J];电子世界;2013年22期
3 张双成;王利;黄观文;;全球导航卫星系统GNSS最新进展及带来的机遇和挑战[J];工程勘察;2010年08期
4 胡中华;赵敏;姚敏;撒鹏飞;;无人机航迹规划技术研究及发展趋势[J];航空电子技术;2009年02期
5 魏玉业;黄健柏;朱建军;;平面不规则曲线特征点的提取[J];测绘科学;2009年03期
6 吴益明;卢京潮;魏莉莉;潘文平;;无人机地面控制站系统的应用研究[J];航空精密制造技术;2006年03期
7 刘子玉;张宇;谢吉龙;;一种基于无线数传电台通讯的远程监控系统[J];工业控制计算机;2006年02期
8 唐强,张翔伦,左玲;无人机航迹规划算法的初步研究[J];航空计算技术;2003年01期
9 骆训纪 ,朱纪洪 ,孙增圻;无人机航迹系统研究[J];测控技术;2002年11期
,本文编号:1940233
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/1940233.html