当前位置:主页 > 科技论文 > 航空航天论文 >

深空环境下近距离绳系卫星系统控制方法研究

发布时间:2018-07-29 10:32
【摘要】:应用多体航天器编队技术进行深空探测是21世纪空间技术发展的新趋势。而绳系卫星系统作为多体航天器编队中的一种特殊形式,与自由编队飞行相比具有控制精度高,节约燃料等优点,尤其适用于合成孔径雷达等空间观测任务,可以进一步提高人类深空探测的能力。但是由于系统的复杂性与多样性,需要根据具体的绳系卫星系统结构与目标,进行动力学建模分析与控制器设计来满足任务需求。本文在总结已有成果的基础上,以国家自然科学基金项目“深空环境下绳系卫星动力学建模与控制研究”为研究背景,对近距离绳系卫星系统的系绳平台姿态控制、相对位置控制及平动点附近的姿轨耦合控制问题进行了深入研究,论文主要包含以下三个部分内容:针对深空环境下多体旋转绳系卫星系绳平台的姿态控制问题,以改变平台旋转角速度并稳定速度变化引起的摆动角运动为控制目标,以最优性和鲁棒性为前提,研究了全驱动系统和欠驱动系统的鲁棒最优控制器设计,并进行了深入分析。给出了多体旋转绳系卫星系绳平台的姿态非线性运动方程,应用同步性理论对其进行了简化,以此为控制对象,首先考虑系统存在的未知干扰与不确定性问题,将最优控制理论、自适应理论和鲁棒误差符号积分方法相结合进行了鲁棒最优控制器的设计与分析,不仅考虑到最优性还能保证系统的鲁棒性。以此为基础,考虑无推力器的欠驱动情况,应用微分同胚映射理论将系统进行转化,进一步应用鲁棒最优控制方法设计了欠驱动系绳平台的姿态稳定控制器。通过对二体旋转绳系卫星系统和直连式三体绳系卫星系统进行仿真与对比分析,验证了控制器设计的有效性。针对深空环境下多体库仑卫星系统的相对位置控制问题,首先对二体及三体库仑卫星系统进行了动力学建模与分析。考虑到库仑推进器的控制输入饱和及外界干扰的存在,应用光滑函数近似饱和函数将系统进行增广,结合反步法提出了二体库仑卫星相对位置控制方法,并利用Nussbaum函数解决增广系统的控制系数时变引起的问题。在此基础上,考虑到库仑力的控制范围和卫星之间潜在的碰撞带来的系统状态有约束的问题,构造了状态限制辅助函数,应用反步法设计了控制受限下的二体库仑卫星系统的相对位置控制器。进一步考虑到无速度信息反馈的情况,结合滤波器的方法设计了库仑卫星相对位置输出反馈控制器。最后,考虑仅采用库仑力控制的一般三体库仑卫星系统的相对位置控制问题,由于其系统具有非线性、非仿射性和多约束等特殊条件,应用一般的辅助函数法进行设计存在一定困难,因此采用非线性预测控制方法设计了考虑多约束的三体库仑绳系卫星的相对位置控制器,最后通过仿真验证了上述控制器设计的有效性。论文最后一部分针对深空环境下长周期运动中二体绳系卫星姿态与轨道稳定控制问题进行了研究。为了进行具体分析,假设系统质心位于地-月系共线平动点附近。在限制性三体问题下,应用欧拉-拉格朗日方法建立了二体绳系卫星系统的非线性姿态轨道耦合动力学模型,并以此为控制对象设计了基于二次型最优问题的非线性SDRE控制器。考虑到在轨道运动中位置速度信息不易获得的情况,应用SDRE状态观测器理论对速度信息进行观测,并与非线性SDRE反馈控制方法结合,设计了非线性SDRE输出反馈控制器。接下来,考虑到长期运动过程中,空间中存在的干扰会对系统稳定造成影响,对太阳光压力、轨道偏心率和太阳引力摄动等主要干扰进行了分析。并针对考虑干扰影响的二体绳系卫星系统鲁棒控制问题,提出了将鲁棒控制问题转化为二次型最优控制问题的方法,通过对二次型最优问题的求解间接地得到鲁棒控制问题的控制器,由此得到二体绳系卫星系统姿轨耦合非线性鲁棒SDRE控制器,并进行了系统的稳定性分析。最后,通过数值仿真验证了所设计方法的有效性。
[Abstract]:The application of multi-body spacecraft formation technology to deep space detection is a new trend in the development of space technology in twenty-first Century. As a special form of the multibody spacecraft formation, the rope system has the advantages of high control precision and fuel saving compared with free formation flight. It is especially suitable for space observation tasks such as synthetic aperture radar, and so on. To further improve the ability of human deep space detection, however, due to the complexity and diversity of the system, the dynamic modeling analysis and controller design are needed to meet the requirements of the task according to the structure and target of the specific rope system satellite system. On the basis of summarizing the existing achievements, this paper takes the National Natural Science Foundation Project "deep space environment". The research of the dynamic modeling and control of the rope system satellite is the research background. The attitude control of the tether platform, the relative position control and the attitude and orbit coupling control near the moving point of the close range ropes system are deeply studied. The paper mainly contains the following three parts: the multibody ropes in the deep space environment The attitude control problem of the platform is used to change the swing angle motion caused by the rotating angular velocity of the platform and the change of the steady speed change as the control target. Based on the optimality and robustness, the robust optimal controller design of the full drive system and the underactuated system is studied, and the multi-body rotating rope system platform of the satellite tether is given. The nonlinear motion equation of attitude is simplified by using the synchronization theory. In this way, the unknown disturbance and uncertainty of the system are considered. The optimal control theory, the adaptive theory and the robust error sign integration method are combined to design and analyze the optimal controller of the Lu bar. Optimality can also guarantee the robustness of the system. On the basis of this, considering the underactuation of the non thruster, the system is transformed by differential homeomorphism, and the attitude stabilization controller of the underactuated tether platform is designed by using the robust optimal control method. The two body rotating rope system and the direct connected trisomy rope are used. The simulation and comparison analysis of the satellite system verify the effectiveness of the controller design. In view of the relative position control problem of the multi-body Coulomb satellite system under the deep space environment, the dynamic modeling and analysis of the two body and three body Coulomb satellite system are carried out first, and the existence of the control input saturation and external interference of the Coulomb propulsion is taken into account. Using the approximate saturation function of the smooth function, the system is augmented, and the relative position control method of the two body Coulomb satellite is proposed by the anti step method, and the problem caused by the time change of the control coefficient of the augmented system is solved by using the Nussbaum function. The state restriction problem, the state restriction auxiliary function is constructed, and the relative position controller of the two body Coulomb satellite system under control is designed by using the backstepping method. The feedback controller of the Coulomb satellite phase pair position is designed with the method of the speed free feedback. The relative position control problem of the general three body Coulomb satellite system controlled by Coulomb force is difficult to be designed by the general auxiliary function method because of its nonlinear, non affine and multi constraint conditions. Therefore, the nonlinear predictive control square method is used to design a three body Coulomb line guard with multiple constraints. The relative position controller of the star is used to verify the effectiveness of the design of the above controller. The last part of the paper is aimed at the study of the attitude and orbit stability of the two body ropes in the long period motion of the deep space environment. Under the restrictive trisomy problem, the nonlinear attitude track coupling dynamic model of the two body rope system satellite system is established by using the Euler Lagrange method, and the nonlinear SDRE controller based on the two times optimal problem is designed as the control object. Considering the situation that the position velocity information is not easy to be obtained in the orbit movement, the SD is applied to the system. The RE state observer theory observes the velocity information and combines with the nonlinear SDRE feedback control method to design a nonlinear SDRE output feedback controller. Next, the disturbance in the space will affect the stability of the system in the long motion process, and the solar light pressure, orbital eccentricity and solar gravitational perturbation are the main factors. The interference is analyzed. In view of the robust control problem of the two body rope system satellite system considering the influence of interference, the method of transforming the robust control problem into the two order optimal control problem is proposed. The controller of the robust control problem is indirectly obtained by the solution of the two order optimal problem, thus the attitude and orbit of the two body ropes system satellite system is obtained. The nonlinear robust SDRE controller is coupled and the stability of the system is analyzed. Finally, the effectiveness of the design method is verified by numerical simulation.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:V448.2


本文编号:2152401

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/2152401.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b6926***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com