基于随机森林的风洞马赫数预测模型
[Abstract]:In wind tunnel test, the stability and rapidity of Mach number have an important effect on the quality of wind tunnel flow field. In order to control Mach numbers accurately, Mach numbers must be predicted quickly and accurately. Wind tunnel experiments have accumulated a large amount of data and the big data set contains more useful information, which raises the possibility of accurate prediction of Mach numbers, but also increases the complexity of modeling. Usually, highly complex models increase the computational burden when they are actually used. For the big data set problem, this paper applies the stochastic forest method to wind tunnel Mach number modeling. Stochastic forest is an integrated model modeling method, which reduces the complexity of the model in three aspects: generating multiple subsets of samples, reducing the number of training samples of the sub-model, having a parallel integration structure, and the sub-model can be run on different CPU. The simple learning algorithm regression tree is used as the basic learning machine to reduce the complexity of the submodel. The experimental results show that the Mach number prediction model based on random forest can effectively utilize the accumulated big data and meet the requirements of engineering prediction speed and precision.
【作者单位】: 东北大学信息科学与工程学院;中国空气动力研究与发展中心高速空气动力研究所;
【基金】:国家自然科学基金(61473073,61333006)~~
【分类号】:V211.74
【参考文献】
相关期刊论文 前7条
1 Liu Wei;Ma Xin;Li Xiao;Chen Ling;Zhang Yang;Li Xiaodong;Shang Zhiliang;Jia Zhenyuan;;High-precision pose measurement method in wind tunnels based on laser-aided vision technology[J];Chinese Journal of Aeronautics;2015年04期
2 Yan Yunju;Xi Zhuyou;Zhang Shanzhi;;Numerical simulation and transonic wind-tunnel test for elastic thin-shell structure considering fluid structure interaction[J];Chinese Journal of Aeronautics;2015年01期
3 钱卫;张桂江;刘钟坤;;飞机全动平尾颤振特性风洞试验[J];航空学报;2015年04期
4 路波;吕彬彬;罗建国;余立;杨兴华;郭洪涛;曾开春;;跨声速风洞全模颤振试验技术[J];航空学报;2015年04期
5 孙智伟;白俊强;高正红;肖春生;郝礼书;;现代超临界翼型设计及其风洞试验[J];航空学报;2015年03期
6 郭昌辉;刘贵全;张磊;;基于回归树与K-最近邻交互模型的存储设备性能预测[J];南京大学学报(自然科学版);2012年02期
7 陈湘芳;陈明;冯国富;池涛;;多变量时序回归树的黄瓜产量预测模型[J];计算机工程与设计;2012年01期
【共引文献】
相关期刊论文 前3条
1 王晓军;袁平;毛志忠;杜宁;;基于随机森林的风洞马赫数预测模型[J];航空学报;2016年05期
2 阮辉;罗兴,
本文编号:2195760
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/2195760.html