多级轴流压气机内复杂流动结构的实验和数值研究
[Abstract]:Complex viscous flow in the end-wall region seriously degrades the aerodynamic performance of a multistage axial compressor. Existing studies have shown that the loss of the end-wall, including tip clearance flow and secondary flow, usually accounts for 50%-70% of the total loss of flow in the compressor. Therefore, a thorough understanding of the flow field structure in the multistage axial compressor, especially in the end-wall region, as well as its main physical properties is given. The mechanism has important practical significance for improving the aerodynamic performance of high-pressure compressors and even aero-engines. In view of the small size and high speed of the rear stage of high-pressure compressors, it is difficult to carry out detailed flow field measurement technology, high cost, high risk and long cycle, low-speed simulation experiments have been applied to a certain extent, but so far domestic research in this field has been carried out. Experimental studies are still scarce, which greatly limits the improvement of design capability of high-pressure compressors for aero-engines in China. In this paper, based on abundant and comprehensive experimental measurements, steady/unsteady CFD calculations are supplemented by two four-stage compressors used in low-speed simulation experiments of high-pressure compressors for a certain validator and a blade-tip critical rotor A and A. A non-tip critical rotor B was developed to study the aerodynamic performance and internal flow structure of a compressor. The main flow structures in the compressor were obtained, including the flow characteristics of the quasi-repetitive stage, the tip leakage flow and its interface with the mainstream gradually flattened with the leading edge as the flow rate decreased, and the blade boundary in the stator passage. A pair of angular vortices formed along the layer and in the corner region of the suction surface at both ends seriously affect the performance of the compressor. The stator with a larger bow first appears to be recirculated in the suction surface blade with the decrease of flow rate. The physical mechanism of complex steady/unsteady flow interaction and the source of high flow loss in a multistage axial compressor are revealed. Based on the understanding of the complex flow structure inside the prototype compressor, advanced blade design technology is adopted to improve the flow in the hub region of the prototype compressor and improve the aerodynamic performance of the compressor, which provides the necessary support for the design of the high-pressure compressor of the contemporary high-performance aeroengine in China. Based on the "simulation criteria" parameters, the aerodynamic design and detailed flow structure of a low-speed prototype 4-stage repetitive axial compressor were studied experimentally. The aerodynamic design includes the establishment of simulation objectives, the determination of the overall parameters of the low-speed simulation stage, the S2 aerodynamic design, the repetitive stage and the quasi-repetitive stage blade design, and the quasi-repetitive stage design. The inlet blockage was incorporated into the design of the low-speed simulated compressor, and the low-speed simulated design system was improved. The reliability and accuracy of the design of the low-speed compressor were effectively improved. The uncertainty of the main aerodynamic parameters and the main factors affecting the uncertainty were analyzed. The static pressure distribution on the stator surface and the measurement of the rotor tip flow field in the rotor and stator blade passages show the detailed flow field structure in the whole simulation stage, including the characteristics of the quasi-repetitive stage flow, the variation of the tip leakage flow and its interface with the main flow conditions. The results show that the blade load in the hub region of the third stage rotor of a prototype compressor is high and there is a certain flow separation. At the same time, the stator hub also has a large flow blockage, separation and higher total pressure loss. Part 2 is based on the recognition of the complex flow structure in the prototype compressor. In order to reduce the flow loss in the hub region, a parameterized study of stacking rule was carried out on the stator for the simulated stage rotation. The selection of the end bending angle was made clear to reduce the flow loss in the hub region. The improvement scheme includes the following elements: rotor "J" The experimental results show that the efficiency of the four-stage compressor is increased by about one percentage point, the total pressure rise coefficient is increased by about 1.4%, the total pressure rise coefficient of the third stage is increased by about 10%, and the unstable flow rate is basically the same as that of the prototype. The structure reflects the new three-dimensional blade design characteristics, and the main physical mechanism of improving the flow structure and aerodynamic performance of the compressor by using the new blade shape is studied with CFD calculation results. The blade passage frequency (fBPF) has higher energy and root mean square of total pressure. The interaction between stator boundary layer and stator boundary layer in the preceding stage enhances the high-order harmonic energy. This phenomenon is more obvious near the blade tip and compressor outlet. The energy amplitude of 2fBPF in the blade tip region of the third stage is eight times that of fBPF. Aerodynamic noise and vibration control in a compressor are of great importance. Part 3 is a detailed numerical study of the tip region of a blade-tip stall rotor A and a non-tip stall rotor B. The study reveals the main flow structure of tip leakage vortices. For non-tip critical rotor B, the blade with a clearance height of 62.5% or less has been investigated. In the tip region, the fluid flowing from the leading edge of the tip clearance will entrap into the tip leakage vortex. With the increase of the tip clearance height, the tip leakage vortex occupies the position from inside to outside, while the flow above 62.5% clearance height does not entrap into the tip leakage vortex, but mainly presents secondary leakage. Self-excited unsteadiness occurs at the tip of rotor A blade, which is strongly dependent on tip clearance size and has little to do with the thickness of upper boundary layer. Two blockage zones are formed at the tip of rotor A blade, in which the large blockage zone formed by the interaction of tip secondary vortex and broken tip leakage vortex will produce a large flow loss, which will be directly related to the thickness of upper boundary layer. The aerodynamic stability of the rotor is determined. Eliminating or at least weakening the strength of the secondary vortex by effective flow control method will help to widen the stable operating range of the rotor.
【学位授予单位】:南京航空航天大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:V233
【相似文献】
相关期刊论文 前10条
1 罗俊,陈林根,孙丰瑞,倪宁;一维多级轴流压气机性能的解析优化[J];热科学与技术;2003年01期
2 阎德有;起动过程轴流压气机的模型化[J];航空学报;1985年05期
3 金永民;轴流压气机模化设计探讨[J];热能动力工程;1988年06期
4 郁新华,廉小纯,吴虎,张丽娟;轴流压气机过失速行为的数值模拟[J];南京航空航天大学学报;2000年02期
5 罗俊,陈林根,孙丰瑞,倪宁;一维多级轴流压气机性能的解析优化[J];海军工程大学学报;2002年06期
6 赵勇,胡骏;均匀与非均匀进气条件下多级轴流压气机性能计算[J];航空发动机;2003年04期
7 罗俊,陈林根,孙丰瑞,倪宁;给定通流部分形状时轴流压气机级性能优化[J];燃气涡轮试验与研究;2003年01期
8 张燎原,胡骏;轴流压气机叶片排流场非定常频谱特性试验技术[J];燃气涡轮试验与研究;2004年01期
9 程荣辉;轴流压气机设计技术的发展[J];燃气涡轮试验与研究;2004年02期
10 吉桂明;;轴流压气机流动的控制技术[J];热能动力工程;2006年02期
相关会议论文 前10条
1 李长征;符娆;熊兵;;轴流压气机气动失稳信号分析[A];2010航空试验测试技术学术交流会论文集[C];2010年
2 王华青;林森;;轴流压气机设计方法研究和设计实例[A];中国航空学会第七届动力年会论文摘要集[C];2010年
3 丁建国;杨庆长;;某四级轴流压气机设计与全三维数值仿真研究[A];第13届中国系统仿真技术及其应用学术年会论文集[C];2011年
4 张靖煊;聂超群;陈静宜;;叶顶微喷气提高旋转畸变条件下轴流压气机失稳裕度的机理分析[A];大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集[C];2007年
5 侯安平;周盛;;轴流压气机尾流撞击效应数学模型的探索[A];2003空气动力学前沿研究论文集[C];2003年
6 姚宏;张广军;王相波;;航空发动机压气机系统混沌预测[A];第十一届全国非线性振动学术会议暨第八届全国非线性动力学和运动稳定性学术会议论文摘要集[C];2007年
7 龚建波;聂超群;;轴流压气机进气含湿量变化与失速特征的关联[A];大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集[C];2007年
8 向宏辉;葛宁;任铭林;;基于试验数据的轴流压气机喘振边界经验预估方法[A];中国航空学会第七届动力年会论文摘要集[C];2010年
9 屠宝锋;胡骏;;径向总压畸变对轴流压气机气动稳定性影响的试验研究[A];中国航空学会第七届动力年会论文摘要集[C];2010年
10 郑新前;侯安平;周盛;;利用合成射流控制轴流压气机中的非定常分离[A];第十届全国分离流、旋涡和流动控制会议论文集[C];2004年
相关博士学位论文 前7条
1 张晨凯;多级轴流压气机内复杂流动结构的实验和数值研究[D];南京航空航天大学;2015年
2 邵卫卫;风扇/轴流压气机最大负荷设计技术探索[D];中国科学院研究生院(工程热物理研究所);2008年
3 刘飞;低速轴流压气机中流动分离的定常与非定常控制研究[D];华中科技大学;2008年
4 马文生;多级轴流压气机气动优化设计研究[D];清华大学;2009年
5 王Pr臣;稳定性调控状态下的轴流压气机转子叶顶尾迹实验研究[D];中国科学院研究生院(工程热物理研究所);2013年
6 朱荣凯;氦气轴流压气机相似模化研究[D];哈尔滨工程大学;2008年
7 李继超;轴流压气机叶顶喷气扩稳技术—机理及智能调控[D];中国科学院研究生院(工程热物理研究所);2012年
相关硕士学位论文 前10条
1 詹长庚;轴流压气机不同工况下燃气轮机转轴受力及振动特性分析[D];华北电力大学;2015年
2 黄稳;轴流压气机动态测试信号的特征分析方法研究[D];南京航空航天大学;2009年
3 高坤;轴流压气机叶片优化设计及分析[D];西北工业大学;2007年
4 侯乐毅;轴流压气机叶顶间隙流动研究[D];西北工业大学;2004年
5 王亮亮;多级轴流压气机三维数值模拟[D];哈尔滨工程大学;2008年
6 张燎原;轴流压气机叶片排流场非定常频谱特性实验研究[D];南京航空航天大学;2004年
7 苏丽;轴流压气机湿压缩流场数值模拟[D];哈尔滨工程大学;2009年
8 芮长胜;周向总压畸变对轴流压气机稳定性影响的模拟研究[D];西北工业大学;2007年
9 杜文海;跨声速多级轴流压气机非设计点性能预测[D];西北工业大学;2007年
10 闫雪山;轴流压气机进气蜗壳流场分析[D];哈尔滨工程大学;2008年
,本文编号:2208684
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/2208684.html