民用航空发动机风扇叶片适航符合性设计与验证方法研究
[Abstract]:In order to improve the bypass ratio and efficiency of civil turbofan aeroengine, large-sized fan blades must be used. Large-sized fan blades have become a typical feature of civil aeroengine. The airworthiness design and validation of a specific turbofan engine has become a major concern in academia and industry. As one of the most advanced and typical components of a high bypass ratio engine, the fan blade is also a typical representative of the airworthiness design and validation. Based on the airworthiness design and verification, the theory and verification methods involved in the airworthiness design of fan blades are systematically studied. The system design is carried out from the aspects of parametric modeling and structural optimization of fan blades, vibration airworthiness design and verification, bird impact airworthiness design and verification, ice impact and equivalent safety verification, and conformance simulation verification platform. Through extensive numerical analysis and component verification, the risk of fan bench test is reduced and the success rate of airworthiness certification is improved. The main research results are as follows: (1) The parameterization and robustness optimization of fan blades are carried out to solve the complex modeling problem of large fan blades with wide chord bending and sweeping. The geometric parameterization modeling method of fan blade is constructed by parameterization of blade body, arc tenon and root stretching section. The design and stack forming method of fan blade profile based on third-order non-uniform rational B-spline is proposed, which solves the problem of fan blade arc tenon modeling and freedom with center of gravity and center of both ends as the core. It is difficult to smooth the transition from curved surface to rectangular section. The 3D geometric modeling of fan blade is realized, and the modeling is automatically generated based on UG OPEN/API secondary development technology. The approximate response surface model of blade weight, static strength, vibration and bird impact is constructed by displacement and DOE method, which realizes the optimal design of fan blade robustness. The technical problems involved in the whole process of fan blade vibration conformance design and verification, such as flow, method, criterion and test verification, are discussed. Based on the requirements of vibration clauses, the technical requirements, conformity process, modal identification and stress identification methods, component and component level verification, and the whole machine level verification method are proposed. The dynamic stress identification and data processing criteria based on the durability limit percentage lambda, the relative strain lambda and the relative strain lambda of each mode are established. Based on the parameterized fan blade model, the simulation analysis method is applied to the fan blade. Vibration characteristics and vibration stress are calculated, and the relative vibration stress distribution and high cycle fatigue resistance of fan blades are verified by component-level and component-level tests. The analysis results are in good agreement with the test results, and the components have the ability to resist high cycle fatigue, which provides a method and basis for the design and verification of fan blade vibration compliance. (3) The different types of bird impact numerical simulation analysis, element-level bird impact test and component-level bird impact test are involved in the design and verification of aircraft engine bird impact clauses. The airworthiness requirements and judgment criteria of bird impact on fan blades are analyzed. The bird constitutive model and high strain rate constitutive model of fan blades are constructed. The bird impact analysis model is further validated by high-speed impact test. In the analysis model, the ability of the fan blade to resist the impact of large birds, medium birds and large flocks of birds is analyzed by simulation method, and the dangerous point analysis method of the large bird impact and medium bird impact is formed. The power drop analysis method based on the deformation of the fan blade after the impact of large and medium birds is proposed, which realizes the fan blade bird with simulation analysis as the main method. The results show that the maximum blade loss of the fan blade is 27% under the impact of large birds and 18.5% during the impact of large and medium birds. The fan blade has the ability to resist the impact of large, large and medium birds. 4) Aiming at the icing and ice impact problems in the fan blade of aeroengine, the ice meteorological parameters, engine parameters, ice requirements and fan blade ice impact requirements of the engine intake system are proposed. Based on the analysis of fan blade icing, the analysis of key points of ice impact and the validation of ice impact model, the methods of freezing conditions, rotating ice analysis, key point analysis of ice impact and ice impact analysis are established. The validation method of fan blade in icing and ice impact is put forward, and the application of equivalent safety in airworthiness validation of engine fan blade is put forward, which provides the basis for the design and validation of fan blade airworthiness. (5) Aiming at the problem of fast simulation validation and optimization of fan blade airworthiness, the airworthiness of fan blade is set up. On the basis of calculation and verification, a theoretical framework of airworthiness simulation and verification platform based on component, whole machine and data association is proposed, and a set of simulation and verification platform for fan blade airworthiness is developed according to software development specification. The integration of fan blade parametric design, the verification of fan blade vibration compliance and bird impact compliance are realized. Verification, structural optimization design.
【学位授予单位】:南京航空航天大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:V232
【相似文献】
相关期刊论文 前10条
1 白水;遄达800型风扇叶片包容试验成功[J];国际航空;1994年04期
2 生;罗·罗公司首创的宽弦风扇叶片[J];国际航空;1996年09期
3 杨雯;杜发荣;郝勇;丁水汀;李秋实;王营;;宽弦空心风扇叶片动力响应特性研究[J];航空动力学报;2007年03期
4 李杰;;后掠大流量宽弦复合材料风扇叶片技术综述[J];航空制造技术;2009年17期
5 黄惠真;风扇叶片铆裂原因分析(摘要)[J];兵器材料科学与工程;1988年05期
6 佟淑兰;罗-罗公司的宽弦风扇叶片[J];国际航空;1994年09期
7 侯冠群 ,尚波生;宽弦风扇叶片技术的发展[J];国际航空;2002年12期
8 刘业胜;曹玮;郭福水;柴象海;;钛合金空心风扇叶片加工误差对其性能影响的初步分析[J];航空制造技术;2013年16期
9 全宏声;碳复合材料涡轮风扇叶片[J];材料工程;2002年05期
10 赵冰;李志强;侯红亮;廖金华;白秉哲;;钛合金空心风扇叶片成形三维有限元分析(英文)[J];稀有金属材料与工程;2010年06期
相关会议论文 前4条
1 李杰;;可供中国大型航空发动机借鉴的新技术-后掠大流量宽弦复合材料风扇叶片[A];大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集[C];2007年
2 梁养民;谢国印;李长青;王福平;;宽弦空心风扇叶片扩散连接技术研究进展[A];第四届数控机床与自动化技术高层论坛论文集[C];2013年
3 谢加强;;一种风扇配平方法分析[A];第九届长三角科技论坛——航空航天科技创新与长三角经济转型发展分论坛论文集[C];2012年
4 郝勇;李志强;杜发荣;张力;;大涵道比涡扇发动机的宽弦空心风扇叶片技术研究[A];大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集[C];2007年
相关重要报纸文章 前5条
1 ;风扇叶片损坏的应急处理[N];山西科技报;2003年
2 金锋;GE开发新一代碳纤维发动机风扇叶片[N];中国建材报;2013年
3 一行;鸟撞击试验[N];中国航空报;2001年
4 记者 杨静;一种新型发动机推动复合材料在喷气发动机上的应用[N];中国建材报;2006年
5 刘建海;生活提示[N];中国电力报;2000年
相关博士学位论文 前1条
1 曾海军;民用航空发动机风扇叶片适航符合性设计与验证方法研究[D];南京航空航天大学;2015年
相关硕士学位论文 前5条
1 杨瑞瑶;发动机风扇叶片疲劳寿命计算及振动特性分析[D];电子科技大学;2014年
2 刚铁;宽弦空心风扇叶片结构设计及强度分析研究[D];南京航空航天大学;2005年
3 杨杰;风扇叶片鸟撞击响应及受损风扇气动性能分析方法研究[D];南京航空航天大学;2014年
4 高庆峰;宽弦空心风扇叶片超塑成形的数值仿真研究[D];南京航空航天大学;2008年
5 唐钊;发动机冷却风扇叶片参数的研究和优化[D];华南理工大学;2012年
,本文编号:2228772
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/2228772.html