当前位置:主页 > 科技论文 > 航空航天论文 >

硬物对发动机风扇叶片损伤规律的仿真研究

发布时间:2018-10-13 14:35
【摘要】:在发动机风扇叶片外物损伤研究中,为获得硬物初次撞击到风扇叶片的数据及撞击后叶片损伤凹坑的深度和宽度。本文借助计算流体动力学模拟技术模拟不同初始条件下硬物在发动机流场中从地面起动至初次撞击到风扇叶片的运动轨迹,并获得撞击到风扇叶片上的位置、速度以及方向,进而建立硬物撞击风扇叶片的碰撞模型,模拟不同初始条件下硬物对发动机风扇叶片损伤产生凹坑的深度与宽度,具体研究方法如下:(1)通过分析硬物的物理性质,根据牛顿第二定律对硬物在流场中运动时进行受力分析,建立硬物运动的微分方程,通过积分求解获得硬物在流场中?t后位置坐标的迭代公式,根据迭代公式以及流场内任意点的气动参数计算确定硬物吸入发动机的运动轨迹;对硬物撞击风扇叶片速度进行估算,得出硬物撞击风扇叶片的速度估算值。(2)建立了发动机整级风扇叶片、轮毂、整流罩以及发动机气体流场的三维几何模型,对流场进行仿真并获得了气体流场仿真模型,再采用颗粒离散相模型对硬物在流场中的运动轨迹进行仿真。通过改变硬物在流场中的初始条件来获得硬物吸入发动机的不同运动轨迹图以及撞击到风扇叶片上的位置、速度和方向。(3)建立了硬物撞击风扇叶片的计算模型,确定材料参数并进行了大量的碰撞动态仿真。分析硬物撞击发动机风扇叶片进气边损伤产生凹坑的尺寸与硬物撞击叶片速度、直径、密度以及撞击风扇叶片位置的关系。仿真结果表明:尽管硬物在流场中的初始位置相差较多,但吸至进气道口时几乎已为相同位置,撞击到风扇叶片的位置都比较集中,大多集中在YOZ截面中心线下方靠近叶尖位置。硬物对发动机风扇叶片进气边损伤产生凹坑的尺寸与硬物直径、密度、撞击叶片相对速度的增加呈一定的线性关系,可以认为随着凹坑深度的增大,凹坑宽度也随之变大,不过凹坑的宽深比有略微增大的趋势。仿真结果为航空发动机风扇叶片的损伤试验提供理论依据。
[Abstract]:In order to obtain the data of the first impact of the hard object on the fan blade and the depth and width of the damage pit of the blade after the impact, the external damage of the engine fan blade is studied. In this paper, by means of computational fluid dynamics simulation technique, the motion track of hard objects in different initial conditions from ground start to initial impact to fan blade is simulated, and the position, velocity and direction of impact on fan blade are obtained. Then, the impact model of hard object impingement fan blade is established, and the depth and width of crater caused by hard object damage to fan blade under different initial conditions are simulated. The specific research methods are as follows: (1) by analyzing the physical properties of hard object, According to Newton's second law, the force of hard object in flow field is analyzed, the differential equation of hard object motion is established, and the iterative formula of the position of hard object in flow field after t is obtained by integral solution. According to the iterative formula and the aerodynamic parameter calculation of any point in the flow field, the motion track of the hard object suction engine is determined, and the velocity of the hard object impinging on the fan blade is estimated. The velocity estimation of the rigid object impingement fan blade is obtained. (2) the three-dimensional geometry model of the whole stage fan blade, hub, fairing and engine gas flow field is established, the flow field is simulated and the simulation model of the gas flow field is obtained. Then the particle discrete phase model is used to simulate the motion trajectory of hard objects in the flow field. By changing the initial conditions of the hard object in the flow field, the different motion trajectories of the hard object suction engine and the position, velocity and direction of impingement on the fan blade are obtained. (3) the calculation model of the hard object impinging on the fan blade is established. Material parameters are determined and a large number of dynamic collision simulations are carried out. The relationship between the size of the crater and the velocity, diameter, density and the position of the impingement fan blade is analyzed. The simulation results show that although the initial position of the hard object in the flow field is quite different, it is almost in the same position at the inlet of the inlet, and the position of impingement on the fan blade is relatively concentrated. Most of them are located near the tip of YOZ section. The size of the crater caused by the damage of the inlet edge of the engine fan blade is linearly related to the increase of the relative velocity of the rigid object, the density and the relative velocity of the impingement blade. It can be concluded that with the increase of the depth of the pit, the width of the pit also increases. However, there is a slight increase in the width to depth ratio of the pit. The simulation results provide the theoretical basis for the damage test of the fan blade of aero-engine.
【学位授予单位】:中国民航大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:V232.4

【相似文献】

相关期刊论文 前10条

1 白水;遄达800型风扇叶片包容试验成功[J];国际航空;1994年04期

2 生;罗·罗公司首创的宽弦风扇叶片[J];国际航空;1996年09期

3 杨雯;杜发荣;郝勇;丁水汀;李秋实;王营;;宽弦空心风扇叶片动力响应特性研究[J];航空动力学报;2007年03期

4 李杰;;后掠大流量宽弦复合材料风扇叶片技术综述[J];航空制造技术;2009年17期

5 黄惠真;风扇叶片铆裂原因分析(摘要)[J];兵器材料科学与工程;1988年05期

6 佟淑兰;罗-罗公司的宽弦风扇叶片[J];国际航空;1994年09期

7 侯冠群 ,尚波生;宽弦风扇叶片技术的发展[J];国际航空;2002年12期

8 刘业胜;曹玮;郭福水;柴象海;;钛合金空心风扇叶片加工误差对其性能影响的初步分析[J];航空制造技术;2013年16期

9 全宏声;碳复合材料涡轮风扇叶片[J];材料工程;2002年05期

10 赵冰;李志强;侯红亮;廖金华;白秉哲;;钛合金空心风扇叶片成形三维有限元分析(英文)[J];稀有金属材料与工程;2010年06期

相关会议论文 前4条

1 李杰;;可供中国大型航空发动机借鉴的新技术-后掠大流量宽弦复合材料风扇叶片[A];大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集[C];2007年

2 梁养民;谢国印;李长青;王福平;;宽弦空心风扇叶片扩散连接技术研究进展[A];第四届数控机床与自动化技术高层论坛论文集[C];2013年

3 谢加强;;一种风扇配平方法分析[A];第九届长三角科技论坛——航空航天科技创新与长三角经济转型发展分论坛论文集[C];2012年

4 郝勇;李志强;杜发荣;张力;;大涵道比涡扇发动机的宽弦空心风扇叶片技术研究[A];大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集[C];2007年

相关重要报纸文章 前5条

1 ;风扇叶片损坏的应急处理[N];山西科技报;2003年

2 金锋;GE开发新一代碳纤维发动机风扇叶片[N];中国建材报;2013年

3 一行;鸟撞击试验[N];中国航空报;2001年

4 记者 杨静;一种新型发动机推动复合材料在喷气发动机上的应用[N];中国建材报;2006年

5 刘建海;生活提示[N];中国电力报;2000年

相关博士学位论文 前1条

1 曾海军;民用航空发动机风扇叶片适航符合性设计与验证方法研究[D];南京航空航天大学;2015年

相关硕士学位论文 前6条

1 吴伟东;硬物对发动机风扇叶片损伤规律的仿真研究[D];中国民航大学;2016年

2 刚铁;宽弦空心风扇叶片结构设计及强度分析研究[D];南京航空航天大学;2005年

3 杨瑞瑶;发动机风扇叶片疲劳寿命计算及振动特性分析[D];电子科技大学;2014年

4 杨杰;风扇叶片鸟撞击响应及受损风扇气动性能分析方法研究[D];南京航空航天大学;2014年

5 高庆峰;宽弦空心风扇叶片超塑成形的数值仿真研究[D];南京航空航天大学;2008年

6 唐钊;发动机冷却风扇叶片参数的研究和优化[D];华南理工大学;2012年



本文编号:2268970

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/2268970.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0be63***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com