基于观察学习的机场噪声异构集成预测模型
[Abstract]:With the continuous improvement of China's comprehensive national strength, the civil aviation transportation industry has made remarkable achievements. However, the increasingly serious problem of airport noise pollution has been accompanied, effective control of noise pollution around the airport has become a problem that civil aviation practitioners must focus on at present. Airport noise prediction is an important prerequisite for airport noise assessment and noise prevention, so it is of great significance to build a scientific, reasonable and comprehensive airport noise prediction model. In this paper, the existing prediction methods of airport noise based on machine learning are studied in detail. Among them, only one learner is used for correlation analysis prediction, and the prediction accuracy is not high and the generalization ability is poor. In this paper, an integrated prediction method for airport noise correlation analysis is proposed. The method considers the main influencing factors of airport noise and combines the idea of integrated learning. The spatial fitting algorithm and the BP neural network algorithm are used to construct a number of basic learning devices, and then the observation learning algorithm is used to integrate the multiple basic learning devices. The integration of multiple different learning devices can effectively improve the accuracy of correlation analysis and prediction, and the integration of multiple heterogeneous learning devices ensures the generalization ability of prediction methods. Based on the idea of Kalman filter and the improvement of time series prediction results, this paper presents a time series prediction method for airport noise based on Kalman filter optimization. In this method, a scheme of constructing time series with noise statistics is designed. Support vector regression machine is used to train predictor, and Kalman filter is used to optimize the prediction results. Due to the reasonable time series construction scheme and the optimization of the prediction results, the accuracy of this method is significantly improved compared with the previous time series prediction. Finally, a heterogeneous integrated prediction model of airport noise based on observation learning is proposed to meet the demand of stability, accuracy and reliability of airport noise prediction. In this model, two heterogeneous prediction methods, association analysis prediction and time series prediction, are reasonably integrated by using reverse observation learning through consistent data sets. Compared with the single method, this model has higher prediction accuracy and stronger generalization ability, which is suitable for the practical application of most airports in China.
【学位授予单位】:中国民航大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:V351;TP18
【相似文献】
相关期刊论文 前10条
1 沈洪艳;机场噪声环境影响评价的程序和方法[J];重庆环境科学;2000年04期
2 李泽云;武夷山机场噪声对国家旅游度假区的影响问题及其综合治理[J];福建分析测试;2004年Z1期
3 杨周森;机场和飞机噪声的测量和评价研究初探[J];噪声与振动控制;1988年03期
4 温冬琴;王建东;;基于奇异谱分析的机场噪声时间序列预测模型[J];计算机科学;2014年01期
5 屠仁涌,汪昌龄,顾茸蕾;机场噪声的标准、测量和估算[J];噪声与振动控制;1987年02期
6 郑毅;郑汝海;邵斌;王观虎;徐明霞;;机场噪声管理信息系统研究与开发[J];噪声与振动控制;2009年02期
7 丁万昌;机场噪声概述[J];噪声与振动控制;1987年02期
8 王维;杨小龙;;基于外部成本的机场噪声收费方法研究[J];中国民航大学学报;2013年06期
9 肖慧慧;王超;徐肖豪;;机场飞机噪声评价量及其限值的探讨[J];噪声与振动控制;2011年02期
10 陈欢;许娟娟;;机场噪声监测系统研究[J];科技传播;2011年06期
相关会议论文 前1条
1 柳小毅;施祥;卢向明;翟国庆;;机场噪声与公众主观烦恼关系[A];运输噪声的预测与控制——2009全国环境声学学术会议论文集[C];2009年
相关硕士学位论文 前10条
1 吴跃;WSN中机场噪声压缩感知算法研究[D];南京航空航天大学;2014年
2 肖骁;面向机场噪声感知的组网技术研究[D];南京航空航天大学;2015年
3 陈雪蕊;面向降低机场噪声影响的飞行程序优化研究[D];中国民航大学;2016年
4 呼和木其日;面向机场噪声动态三维可视化的实时计算研究及其实现[D];中国民航大学;2016年
5 王冬冬;机场噪声评价指标分析与应用研究[D];中国民航大学;2012年
6 张国臣;基于ZigBee和Internet的机场噪声监测系统研究[D];中国民航大学;2013年
7 苏瀚;基于观察学习的机场噪声异构集成预测模型[D];中国民航大学;2015年
8 张聪颖;机场噪声烦恼度模型的研究与应用[D];中国民航大学;2015年
9 崔昭宇;面向泛网格式监测点布局的机场噪声动态等值线绘制[D];中国民航大学;2015年
10 杨婷婷;机场噪声的关联规则挖掘及信念网络可视化表示研究[D];中国民航大学;2015年
,本文编号:2382346
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/2382346.html