四旋翼无人机多地面相似目标跟踪与轨迹预测
[Abstract]:Real-time target tracking and trajectory prediction have broad application prospects in security monitoring, intelligent transportation, military strike and other fields. In this paper, based on the 7th generation mission of (IARC), the problem is studied on the platform of four-rotor UAV, and a multi-similar target tracking algorithm combining detector and tracker is designed, on the basis of which the trajectory prediction of the target is realized. Firstly, in order to realize the automatic acquisition of target tracking area after initial tracking and tracking failure, a multi-target detector based on support vector machine (SVM) is designed, which is characterized by direction gradient histogram (HOG). The performance of the initial detector is improved by bootstrap method and cross-verification method, so that the accuracy of the detector is more than 98%, and the target scale is also improved. The rotation change and the light change of the environment have good robustness. Secondly, a real-time target tracker based on improved Mean Shift algorithm is designed. In view of the fact that the algorithm needs to select the target model manually, introduce the target model template to realize the automatic acquisition of the target model, aiming at the uncertainty of the target tracking state, the multiple judgment conditions of tracking failure are established, and the accurate monitoring of the tracker state is realized. Thirdly, a multi-similar target tracking algorithm is designed by combining the detector with the tracker through the fusion cage. When the system starts, the target is detected frame by frame, the potential target is searched, and the target that needs to be traced is identified by color segmentation, the corresponding template is introduced, and the tracker is turned on. In the tracking process, the target tracking state is judged frame by frame, and the target detection is carried out at different frames, and the stability and real-time performance balance of the system is obtained. Finally, a target trajectory prediction algorithm based on Kalman filter and least square method is proposed. Firstly, the ground moving target is modeled and analyzed, then the target position in the image coordinate system is mapped to the world coordinate system through camera calibration and inverse perspective mapping, and the global positioning of the target is realized. Finally, the target trajectory is predicted and fitted by Kalman filter and least square method, which provides the decision basis for the four-rotor UAV to search for and track the target.
【学位授予单位】:中国民航大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:V279
【相似文献】
相关期刊论文 前6条
1 单甘霖;梅卫;王春平;;联合目标跟踪与分类技术的进展及存在问题[J];兵工学报;2007年06期
2 吕铁军;蒋宏;梁国威;丁全心;;基于多模型的联合目标跟踪与分类算法[J];电光与控制;2013年08期
3 赵云峰;陈隆道;孟庆利;;提高红外经纬仪跟踪弱小目标精度的新算法[J];浙江大学学报(工学版);2008年07期
4 何献武;胥辉旗;程永茂;;基于加速度的多目标联合跟踪与分类[J];舰船电子工程;2011年06期
5 高俊吉;刘大明;周国华;;水中非合作运动磁性目标跟踪及参数估计[J];哈尔滨工程大学学报;2013年09期
6 ;[J];;年期
相关会议论文 前2条
1 楚威;阎星娥;苏春梅;;仿真系统中飞机目标典型运动模型的研究与实现[A];Proceedings of 14th Chinese Conference on System Simulation Technology & Application(CCSSTA’2012)[C];2012年
2 张晓勇;罗来源;;被动测向声纳目标最近时刻估计[A];第六届全国信号和智能信息处理与应用学术会议论文集[C];2012年
相关博士学位论文 前10条
1 冯肖雪;复杂环境下多传感器目标跟踪关键技术研究[D];西北工业大学;2015年
2 江同洋;基于随机有限集的多目标贝叶斯滤波方法研究[D];浙江大学;2015年
3 史春妹;随机滤波方程数值解法及显微目标跟踪研究[D];哈尔滨工业大学;2015年
4 赵海楠;视觉目标跟踪中表观建模方法研究[D];哈尔滨工业大学;2016年
5 张国亮;红外多光谱多个弱小运动目标的检测与跟踪技术研究[D];哈尔滨工业大学;2016年
6 顾菘;视频目标的跟踪与分割的理论和方法研究[D];电子科技大学;2016年
7 钟金琴;基于视觉的目标跟踪关键技术研究[D];合肥工业大学;2014年
8 赵玲玲;目标跟踪中的粒子滤波与概率假设密度滤波研究[D];哈尔滨工业大学;2011年
9 罗飞腾;目标跟踪的粒子滤波技术研究[D];中国科学技术大学;2010年
10 王勇;基于统计方法的运动目标检测与跟踪技术研究[D];华中科技大学;2009年
相关硕士学位论文 前10条
1 章聪;空中虚拟靶标技术的研究[D];南京理工大学;2015年
2 侯胜彬;基于OpenCV的运动目标检测跟踪的研究[D];电子科技大学;2014年
3 伍俊橙;多目标粒子滤波算法研究[D];电子科技大学;2014年
4 廖良雄;基于随机有限集的弱小目标TBD方法研究[D];西安电子科技大学;2014年
5 段羽浩;基于SE-WORKBENCH的飞机目标雷达信号仿真[D];华中科技大学;2014年
6 陈大龙;基于DSP的目标检测与跟踪系统的研究与设计[D];燕山大学;2016年
7 曾政超;四旋翼无人机多地面相似目标跟踪与轨迹预测[D];中国民航大学;2015年
8 张儒元;基于PTZ镜头的主动目标跟踪[D];西安电子科技大学;2009年
9 范晶晶;分布式多视角目标跟踪的统计推理方法及实现[D];复旦大学;2011年
10 胡鹏;Kalman滤波在视频目标跟踪中的应用研究[D];重庆大学;2010年
,本文编号:2498388
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/2498388.html