大型飞机翼身保形对接控制系统设计
[Abstract]:It is the goal of aircraft assembly to ensure the pneumatic shape of aircraft and eliminate the assembly stress. A large aircraft uses multiple three-coordinate NC locators to support and adjust the wing and fuselage respectively, and the wing body docking assembly is realized by docking the four joints at the middle opening of the fuselage with the four joints at the central wing box of the fuselage. The large opening structure in the middle part of the fuselage reduces the overall stiffness of the fuselage segment. Under the support of the three-coordinate NC locator, the gravity load of the fuselage, including the landing gear, causes the deformation of the opposite area of the wing body, resulting in a large assembly stress. In this paper, a force-level hybrid control method is proposed for the attitude adjustment and docking system. On the premise of ensuring the pneumatic shape of the fuselage section, through the cooperative motion of each three-coordinate NC locator, the deformation correction measures are carried out on the alignment area of the wing body, so as to realize the conformal docking of the wing body and reduce the assembly stress of the wing body alignment area. The main research contents are as follows: firstly, the research and development status of aircraft large component attitude adjustment system at home and abroad is introduced, the theory and technology of deformation correction and the development of aircraft large component conformal assembly are summarized, and the control methods of attitude adjustment system are summarized from the point of view of parallel mechanism. Secondly, the attitude adjustment process and system composition of a large aircraft wing pose adjustment and docking system are described. Based on SynqNet field bus technology, the cooperative motion control system of three coordinate NC locators is designed. The assembly technology of wing body docking and the special structure of fuselage with large opening in wing body docking area are analyzed in detail, and the deformation problems and deformation correction ideas in wing body docking assembly are put forward. Then the force level hybrid control system of wing shape-keeping docking is designed and realized. The structure of force level hybrid control system is put forward. The position control axis and force control axis combination of six three coordinate NC locators involved in fuselage attitude adjustment are selected by using spiral theory and ellipsoid method. The position control axis moves according to the set attitude adjustment path to realize the fuselage attitude adjustment and positioning. According to the contact force servo motion obtained by orthogonal test and partial least square regression inverse solution, the force control shaft corrects the deformation at the large opening of the fuselage. Then the deformation correction effect of the hybrid control method of attitude adjustment mechanism is studied by using computer simulation technology. The finite element simplified model of fuselage is established by using ABAQUS software, and the finite element simulation of fuselage attitude adjustment system with hybrid force and position control is carried out. The simulation results show that the deformation of 7 of the 8 measuring points in the opposite region of the wing body is obviously improved, and the deformation correction effect of the hybrid force and position control method is proved. Then the deformation correction effect of the force level hybrid control method is verified by the actual system experiment. The single axis control system of locator is designed to meet the needs of actual assembly, and the position and force controllers of single axis control system are designed respectively. The one-dimensional deformation correction experiment is designed, and the force-level hybrid control method is used to correct the one-dimensional deformation of the specimen. The experimental results show that the force-level hybrid control method is superior to the position control method in the deformation correction effect of the specimen. Finally, the research work of this paper is summarized, and the future research work is prospected.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:V262.4
【参考文献】
相关期刊论文 前10条
1 尚涛;张近乐;袁晓军;;中国大型商用飞机产业链构建、技术积累与成长策略分析[J];西北工业大学学报(社会科学版);2015年01期
2 罗中海;孟祥磊;巴晓甫;费少华;方强;;飞机大部件调姿平台力位混合控制系统设计[J];浙江大学学报(工学版);2015年02期
3 许国康;高明辉;侯志霞;邹冀华;周万勇;;飞机大部件数字化对接关键问题及应用分析[J];航空制造技术;2011年22期
4 邱宝贵;蒋君侠;毕运波;方强;王青;詹建潮;李江雄;柯映林;;大型飞机机身调姿与对接试验系统[J];航空学报;2011年05期
5 刘瑞江;张业旺;闻崇炜;汤建;;正交试验设计和分析方法研究[J];实验技术与管理;2010年09期
6 郭志敏;蒋君侠;柯映林;;基于三坐标定位器支撑的飞机大部件调姿内力[J];浙江大学学报(工学版);2010年08期
7 张洪伟;张以都;吴琼;代军;;航空整体结构件加工变形校正技术研究[J];兵工学报;2010年08期
8 李晨;方强;李江雄;;基于三坐标定位器的大部件调姿机构误差分析[J];机电工程;2010年03期
9 许国康;;飞机大部件数字化对接技术[J];航空制造技术;2009年24期
10 ;A novel posture alignment system for aircraft wing assembly[J];Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal);2009年11期
相关博士学位论文 前10条
1 严伟苗;大型飞机壁板装配变形控制与校正技术研究[D];浙江大学;2015年
2 盖宇春;飞机数字化装配调姿工装系统设计[D];浙江大学;2013年
3 应征;飞机部件数字化调姿过程建模与仿真关键技术研究[D];浙江大学;2013年
4 梁顺攀;五自由度冗余驱动并联机构性能分析与力/位混合控制研究[D];燕山大学;2013年
5 李彬;支链布局对一类三自由度并联机构结构约束及运动学性能的影响研究[D];天津大学;2012年
6 郝齐;一种两自由度并联机构优化设计及动力学控制研究[D];清华大学;2011年
7 李正义;机器人与环境间力/位置控制技术研究与应用[D];华中科技大学;2011年
8 刘楚辉;飞机机身数字化对接装配中的翼身交点加工关键技术研究[D];浙江大学;2011年
9 王中秋;航空整体结构件加工变形滚压校正理论及方法研究[D];山东大学;2009年
10 张旭;飞机大部件对接装配过程中的干涉检测技术研究[D];浙江大学;2008年
相关硕士学位论文 前4条
1 罗中海;调姿机构力/位置混合控制系统设计[D];浙江大学;2014年
2 覃海强;机械臂力/位置混合控制方法研究[D];重庆大学;2013年
3 靳思源;飞机壁板件装配偏差的刚柔结合建模与工艺优化方法[D];上海交通大学;2013年
4 姜飞荣;永磁同步电机伺服控制系统研究[D];浙江大学;2006年
,本文编号:2506364
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/2506364.html