不确定性容量约束下的网络流优化算法
发布时间:2021-08-10 06:36
为保障空中交通安全,减小航班延误,必须有序安排航班离场和进场时间,空中交通管理基于机场和扇区容量优化分配航班进离场时间,但是由于天气、军事活动、设备故障等不确定因素的影响,机场/扇区容量是动态变化。确定性网络流优化模型将节点容量当作固定值,实际运行时节点容量可能大于或小于预测值,导致航班不能按照分配时隙离场。为降低容量不确定性对航班运行的影响,本文提出不确定容量约束下的网络流优化模型,并使用机会约束方法处理容量不确定性。本文主要做了四部分工作:(1)分别建立确定性和不确定性网络流优化模型;(2)改进机会约束方法,传统机会约束方法针对整个网络,使模型求解困难。针对每个节点设置机会约束值,显著提高模型计算速度;(3)将节点重要性与不确定性模型结合,首次提出根据节点重要性计算机会约束值;(4)最后,设置多种容量方案,对比分析各方案下航班进离场时间与分配时隙的差异,结果表明考虑容量不确定性使分配结果抗干扰增强,在此基础上考虑节点重要性可进一步提高分配结果抗干扰性。本文的研究成果对于节点容量不确定性的网络流优化理论研究以及空中交通流量管理系统开发都有十分重要的意义。
【文章来源】:南京航空航天大学江苏省 211工程院校
【文章页数】:76 页
【学位级别】:硕士
【部分图文】:
华东地区各机场平均跳变幅度8090100
南京航空航天大学硕士学位论文扇区网络中每个节点的度、集聚系数、紧密度和介数,见附表 1。航线网络中节点的度表示机场通航机场的数目,北京首都机场度值最大为 124,所有节点的平均度为 22.75,表示每个机场平均通航机场 23 个;航线网络的密度为 0.137,它是网络连边数与最大可能连边数的比值,航线网络连边密度较稀疏;航线网络的同配系数为-0.37,说明网络是异配的,表示网络中度值小的节点更多地与度值大的节点相连,这与实际相符,小机场通常连接枢纽机场,而小机场之间的连接较少;机场网络的直径为 4,平均最短路径长度为 2.07,表明乘客最多转乘 3 次或平均转乘一次就可从网络中任意一个机场到达另一个机场;网络的平均集聚系数为 0.7,说明机场间连接紧密,结构紧凑。
给塔台管制员;塔台管制员指挥该航班起飞爬升加入指定的离场飞行程序,然后移交给进近管制员;进近管制员指挥航班爬升并加入航路飞行。航班经过多个航路管制扇区(或“区域管制扇区”),到达目的地机场附近,被移交给目的地机场的进近管制员和塔台管制员,完成进场服务。空中交通管理系统是一个复杂的开放系统。当某一扇区的预测流量超出该扇区容量时,流量管理部门就会启动对应机制,实施相关的流量管理方案(Traffic Management Initiative TMI),在一定时间内限制到达该扇区的航班量。由于网络效应和资源共用,该限制将会从一个扇区传播到其他扇区和机场,进而影响到其他扇区或机场内的航班流量。空中交通流量管理模型中,扇区节点的容量是关键的约束条件,但是少有研究关注于空中交通管理扇区的结构特征。我们首次将研究的焦点聚焦于扇区的网络结构,即研究扇区之间的连接性和相互作用的过程,但不关心扇区的具体位置、实际形状以及连边是否相交等。为此,我们把空中交通管理系统抽象为网络,定义机场和扇区为网络中的节点;若扇区之间存在交通流,则将两个扇区节点用边连接。我国的空中交通管制扇区和网络结构分别如图 2.2(a)和(b)所示。图中 2.2(a)中黄色多边形为区调扇区,绿色多边形表示进近扇区,共 261 个管制扇区,其中包括区调扇区 169 个、进近扇区 92个。图中黑色的线表示航路,黑色点代表航路点。图 2.2(b)给出了对应的扇区网络,其中黄色节点表示近进扇区,绿色节点表示区调扇区。
【参考文献】:
期刊论文
[1]危险天气下的终端区动态容量评估[J]. 张兆宁,魏中慧. 科学技术与工程. 2015(21)
[2]地面等待和改航策略的流量管理方法[J]. 高洁,徐肖豪,王兴隆. 航空计算技术. 2012(04)
[3]综合考虑节点重要度和线路介数的网络重构[J]. 王亮,刘艳,顾雪平,王勇,贾京华. 电力系统自动化. 2010(12)
[4]复杂网络中节点重要度评估[J]. 陈静,孙林夫. 西南交通大学学报. 2009(03)
[5]CDM GDP飞机着陆时隙多目标优化分配[J]. 张洪海,胡明华. 系统管理学报. 2009(03)
[6]空中交通流线性二次型最优控制[J]. 刘强,白存儒,林键,陈灵清. 交通与计算机. 2008(06)
[7]时隙分配算法在CDMGDP程序中的应用[J]. 周茜,张学军,柳重堪. 北京航空航天大学学报. 2006(09)
[8]通信网中节点重要性的评价方法[J]. 陈勇,胡爱群,胡啸. 通信学报. 2004(08)
[9]区域空中交通流量控制研究[J]. 赵嶷飞,金长江. 飞行力学. 2002(02)
[10]基于地面等待策略的航班时刻规划方法[J]. 胡明华,钱爱东,苏兰根. 航空学报. 2001(03)
硕士论文
[1]基于紧密度和节点贡献度的链接预测算法研究[D]. 张翠云.燕山大学 2017
[2]天气影响的终端区空域容量评估研究[D]. 范兴.南京航空航天大学 2013
[3]基于CDM的ATFM策略分析及资源分配机制研究[D]. 李泉.南京航空航天大学 2006
本文编号:3333667
【文章来源】:南京航空航天大学江苏省 211工程院校
【文章页数】:76 页
【学位级别】:硕士
【部分图文】:
华东地区各机场平均跳变幅度8090100
南京航空航天大学硕士学位论文扇区网络中每个节点的度、集聚系数、紧密度和介数,见附表 1。航线网络中节点的度表示机场通航机场的数目,北京首都机场度值最大为 124,所有节点的平均度为 22.75,表示每个机场平均通航机场 23 个;航线网络的密度为 0.137,它是网络连边数与最大可能连边数的比值,航线网络连边密度较稀疏;航线网络的同配系数为-0.37,说明网络是异配的,表示网络中度值小的节点更多地与度值大的节点相连,这与实际相符,小机场通常连接枢纽机场,而小机场之间的连接较少;机场网络的直径为 4,平均最短路径长度为 2.07,表明乘客最多转乘 3 次或平均转乘一次就可从网络中任意一个机场到达另一个机场;网络的平均集聚系数为 0.7,说明机场间连接紧密,结构紧凑。
给塔台管制员;塔台管制员指挥该航班起飞爬升加入指定的离场飞行程序,然后移交给进近管制员;进近管制员指挥航班爬升并加入航路飞行。航班经过多个航路管制扇区(或“区域管制扇区”),到达目的地机场附近,被移交给目的地机场的进近管制员和塔台管制员,完成进场服务。空中交通管理系统是一个复杂的开放系统。当某一扇区的预测流量超出该扇区容量时,流量管理部门就会启动对应机制,实施相关的流量管理方案(Traffic Management Initiative TMI),在一定时间内限制到达该扇区的航班量。由于网络效应和资源共用,该限制将会从一个扇区传播到其他扇区和机场,进而影响到其他扇区或机场内的航班流量。空中交通流量管理模型中,扇区节点的容量是关键的约束条件,但是少有研究关注于空中交通管理扇区的结构特征。我们首次将研究的焦点聚焦于扇区的网络结构,即研究扇区之间的连接性和相互作用的过程,但不关心扇区的具体位置、实际形状以及连边是否相交等。为此,我们把空中交通管理系统抽象为网络,定义机场和扇区为网络中的节点;若扇区之间存在交通流,则将两个扇区节点用边连接。我国的空中交通管制扇区和网络结构分别如图 2.2(a)和(b)所示。图中 2.2(a)中黄色多边形为区调扇区,绿色多边形表示进近扇区,共 261 个管制扇区,其中包括区调扇区 169 个、进近扇区 92个。图中黑色的线表示航路,黑色点代表航路点。图 2.2(b)给出了对应的扇区网络,其中黄色节点表示近进扇区,绿色节点表示区调扇区。
【参考文献】:
期刊论文
[1]危险天气下的终端区动态容量评估[J]. 张兆宁,魏中慧. 科学技术与工程. 2015(21)
[2]地面等待和改航策略的流量管理方法[J]. 高洁,徐肖豪,王兴隆. 航空计算技术. 2012(04)
[3]综合考虑节点重要度和线路介数的网络重构[J]. 王亮,刘艳,顾雪平,王勇,贾京华. 电力系统自动化. 2010(12)
[4]复杂网络中节点重要度评估[J]. 陈静,孙林夫. 西南交通大学学报. 2009(03)
[5]CDM GDP飞机着陆时隙多目标优化分配[J]. 张洪海,胡明华. 系统管理学报. 2009(03)
[6]空中交通流线性二次型最优控制[J]. 刘强,白存儒,林键,陈灵清. 交通与计算机. 2008(06)
[7]时隙分配算法在CDMGDP程序中的应用[J]. 周茜,张学军,柳重堪. 北京航空航天大学学报. 2006(09)
[8]通信网中节点重要性的评价方法[J]. 陈勇,胡爱群,胡啸. 通信学报. 2004(08)
[9]区域空中交通流量控制研究[J]. 赵嶷飞,金长江. 飞行力学. 2002(02)
[10]基于地面等待策略的航班时刻规划方法[J]. 胡明华,钱爱东,苏兰根. 航空学报. 2001(03)
硕士论文
[1]基于紧密度和节点贡献度的链接预测算法研究[D]. 张翠云.燕山大学 2017
[2]天气影响的终端区空域容量评估研究[D]. 范兴.南京航空航天大学 2013
[3]基于CDM的ATFM策略分析及资源分配机制研究[D]. 李泉.南京航空航天大学 2006
本文编号:3333667
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/3333667.html