当前位置:主页 > 科技论文 > 航空航天论文 >

基于深度辨识模型的无人直升机自适应控制

发布时间:2021-11-02 21:31
  无人直升机具有体积小、重量轻、价格便宜等特点,并且能够实现垂直起落、协调转向、避障机动等特种飞行任务,这使得无人直升机在测绘监控、农业生产、军事侦察等领域得到了广泛应用。因此,研究无人直升机的系统建模和飞行控制具有重要的意义。但无人直升机是一个复杂的高阶、时变、非线性系统,并且其刚体动力与空气动力、发动机动力、振动以及其他各种动力耦合在一起,增加了系统建模和飞行控制的难度,因此研究无人直升机的系统建模和飞行控制具有很大的挑战性。目前在无人直升机领域,系统建模主要包括机理建模和系统辨识两种方法。但由于无人直升机复杂的空气动力学特性与强耦合特性,这两种方法得到的系统模型往往不能满足建模精度的要求。另一方面伴随着无人直升机应用的拓展,基于这种模型设计的控制算法难以满足无人直升机在复杂不确定环境下不断提高的飞行控制要求。针对这些情况,本文以小型无人直升机为研究对象,采用基于深度学习的方法对其系统建模和自适应控制问题进行了研究,主要包括建立无人直升机的高精度非线性动力学模型,研究机理建模、系统辨识与深度学习结合的深度辨识模型,设计基于深度辨识模型的自适应控制器,并进行相关仿真实验。本文的具体工作... 

【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校

【文章页数】:73 页

【学位级别】:硕士

【文章目录】:
摘要
ABSTRACT
第一章 绪论
    1.1 研究背景及意义
    1.2 国内外研究现状
        1.2.1 无人直升机建模技术
        1.2.2 无人直升机控制技术
        1.2.3 深度学习在控制领域的研究
    1.3 本文内容安排
第二章 系统模型及相关算法
    2.1 无人直升机模型的理论基础
        2.1.1 坐标系定义及其转换
        2.1.2 四元数运动学方程
    2.2 深度学习网络架构
        2.2.1 长短期记忆神经网络
        2.2.2 卷积神经网络
    2.3 本章小结
第三章 无人直升机数学建模
    3.1 问题描述
    3.2 对比模型
        3.2.1 二次滞后模型
        3.2.2 BP神经网络模型
        3.2.3 深度ReLU网络模型
    3.3 深度LSTM辨识器
        3.3.1 动力学模型结构介绍
        3.3.2 深度LSTM模型原理解释
        3.3.3 模型优化
        3.3.4 仿真实验
    3.4 深度CNN辨识器
        3.4.1 原理解释及模型介绍
        3.4.2 仿真实验
    3.5 本章小结
第四章 基于深度CNN辨识器的反步自适应控制
    4.1 问题描述
    4.2 控制器设计
        4.2.1 位置跟踪控制器设计
        4.2.2 姿态跟踪控制器设计
        4.2.3 稳定性分析
    4.3 仿真实验
    4.4 本章小结
第五章 总结与展望
    5.1 本文主要工作与创新点
    5.2 研究展望
参考文献
致谢
在读期间发表的学术论文与取得的研究成果


【参考文献】:
期刊论文
[1]深度学习在控制领域的研究现状与展望[J]. 段艳杰,吕宜生,张杰,赵学亮,王飞跃.  自动化学报. 2016(05)
[2]一种带有监督控制的无人直升机姿态模糊控制器[J]. 范才智,宋宝泉,王建东,刘云辉.  系统仿真学报. 2010(06)



本文编号:3472407

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/3472407.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户912f3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com