当前位置:主页 > 科技论文 > 环境工程论文 >

DDT高效降解菌在室内模拟修复中的应用及其降解机理

发布时间:2017-12-26 17:08

  本文关键词:DDT高效降解菌在室内模拟修复中的应用及其降解机理 出处:《哈尔滨师范大学》2015年硕士论文 论文类型:学位论文


  更多相关文章: DDT 室内模拟降解 固定化 降解途径


【摘要】:本研究以8株具有DDT降解能力的细菌为对象,通过驯化提高其降解率,从中选择降解率最高的菌株研究其降解特性,以正交实验获得各菌株最适降解条件,研究降解途径,分别进行固定化处理,通过正交实验获得最佳降解条件并构建混合菌,模拟自然条件构建室内模拟降解系统,以固定化混合菌株作为研究对象,探究其在室内模拟降解条件下对DDT污染土壤的降解效果。研究结果表明,8菌株的降解率分别由驯化前的31.23%、24.50%、20.68%、35.70%、51.60%、18.40%、40.45%、30.65%提高至35.23%、26.40%、22.90%、40.10%、55.60%、19.50%、46.23%、36.80%。降解率最高的3个菌株为12-2#、12-3#与23#。菌株12-2#的最佳降解条件是:温度32℃、初始pH=7.0、菌体添加量6 mL,最大降解率40.10%;菌株12-3#的最佳降解条件是:温度34℃、初始pH=7.0、菌体添加量8 mL,最大降解率55.60%;菌株23#的最佳降解条件是:温度32℃、初始pH=7.0、菌体添加量6 mL,最大降解率46.23%。3菌株对DDT的降解途径为:好氧条件下,通过2,3-双加氧酶、顺式-2,3-二氢二醇DDT脱氢酶及2,3-二羟基DDT1,2-双加氧酶等的作用,将DDT直接开环,最终生成4-氯苯甲酸。固定化处理使3菌株的降解率分别由40.10%、55.60%、46.23%提高至54.46%、70.07%、61.98%。菌株12-2#、12-3#与23#固定化小球的最佳制备条件分别为:海藻酸钠浓度2%,氯化钙浓度2%,活性炭添加量6 g/L,菌体添加量4 mL(OD600=1.0),交联时间8 h;海藻酸钠浓度3%,氯化钙浓度2%,活性炭添加量6 g/L,菌体添加量4 mL(OD600=1.0),交联时间8 h;海藻酸钠浓度2%,氯化钙浓度2%,活性炭添加量6 g/L,菌体添加量3 mL(OD600=1.0),交联时间8 h时。菌株12-2#、12-3#与23#固定化小球重复利用3次后,降解率未见显著降低(P0.05);低温存储45 d后,降解率仅分别降低4.23%、3.33%与4.52%。混合菌最优构建比例为12-2#:12-3#:23#=1:3:2;最适降解条件为:温度32℃、初始pH=7.0、菌体添加量8 mL,最大降解率为58.43%。混合菌固定化小球的最佳制备条件为:海藻酸钠浓度3%,氯化钙浓度2%,活性炭添加量10 g/L,菌体添加量3mL(OD600=1.0),交联时间8 h;最佳降解条件为:温度32℃、初始pH=7.0、添加量10.0 g,最大降解率70.23%;室内模拟条件下最大降解率49.99%。
[Abstract]:In this study, 8 strains with DDT degrading bacteria, improve the degradation rate through domestication, choose to study the degradation characteristics of the highest rate of degradation from the strains, with the orthogonal experiment to obtain the optimum degradation conditions of the strains, study the degradation pathway, were immobilized by orthogonal experiment, optimal degradation conditions and construct mixed bacteria, simulating the natural conditions of building indoor simulation degradation system with Immobilized Mixed Bacteria as the research object, to explore the effect of simulation on DDT contaminated soil degradation under laboratory condition. The results showed that the degradation rate of 8 strains increased from 31.23%, 24.50%, 20.68%, 35.70%, 51.60%, 18.40%, 40.45%, 30.65% to 35.23%, 26.40%, 26.40%, 26.40%, 26.40%, 26.40%, 40.45%, 30.65%, respectively. The 3 strains with the highest degradation rate were 12-2#, 12-3# and 23#. The optimal degradation conditions of strain 12-2# is: the temperature of 32 DEG C, pH=7.0, initial cell concentration of 6 mL, the maximum degradation rate of 40.10%; the optimal degradation conditions of 12-3# were: the temperature of 34 DEG C, pH=7.0, initial cell concentration of 8 mL, the maximum degradation rate of 55.60%; strain 23# optimal degradation condition is: the temperature of 32 DEG C pH=7.0, the initial cell concentration of 6 mL, the maximum degradation rate of 46.23%. 3, the way of DDT degradation is: under aerobic condition, the 2,3- is directly opened by ring opening of DDT through the action of 2,3- dioxygenase, CIS -2,3- two hydrogen glycol DDT dehydrogenase and 2,3- two hydroxyl DDT1,2- double oxygenase. Finally, 4- chlorobenzoic acid is generated. The degradation rate of 3 strains was increased from 40.10%, 55.60% and 46.23% to 54.46%, 70.07% and 61.98% by immobilized treatment. Preparation conditions of strains 12-2#, 12-3# and 23# were immobilized respectively: 2% sodium alginate concentration, calcium chloride concentration was 2%, the dosage of activated carbon dosage was 6 g/L, 4 mL (OD600=1.0), crosslinking time of 8 h; 3% sodium alginate concentration, calcium chloride concentration was 2%, the dosage of activated carbon 6 g/L, add the amount of mL was 4 (OD600=1.0), crosslinking time of 8 h; 2% sodium alginate concentration, calcium chloride concentration was 2%, the dosage of activated carbon dosage was 6 g/L, 3 mL (OD600=1.0), 8 h crosslinking time. After 3 times of repeated use of strain 12-2#, 12-3# and 23#, the degradation rate was not significantly reduced (P0.05). After storage for 45 d at low temperature, the degradation rate decreased by 4.23%, 3.33% and 4.52%, respectively. The best proportion of mixed bacteria was 12-2#: 12-3#: 23#=1:3:2; the best degradation conditions were: 32 degree temperature, initial pH=7.0, adding 8 mL, and the maximum degradation rate was 58.43%. The optimum preparation conditions for mixed immobilized microorganisms: 3% sodium alginate, calcium chloride concentration was 2%, the dosage of activated carbon was 10 g/L, addition of 3mL (OD600=1.0), crosslinking time of 8 h; the optimal degradation conditions: temperature 32, initial pH=7.0, dosage of 10 g, the maximum degradation rate of 70.23%; the maximum degradation rate of 49.99% under the condition of indoor simulation.
【学位授予单位】:哈尔滨师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X592;X172

【相似文献】

相关期刊论文 前10条

1 Marie Thérèse Bidja Abena;谢观莲;钟卫鸿;;柴油降解新菌株的筛选及降解条件的研究[J];黑龙江科学;2013年02期

2 雷欢;黄栩;田蕴;郑天凌;;一株菲降解细菌的筛选及其降解条件的优化[J];海洋科学集刊;2009年00期

3 崔文娟;邹月利;陶波;孙宁;赵迪;朱美华;张如如;;真菌黄曲霉对氟磺胺草醚的最佳降解条件研究[J];食品工业科技;2014年01期

4 熊小真;赵南;;基于响应面分析法的甲胺磷降解条件优化[J];安徽农业科学;2010年27期

5 李清平;马丽莉;唐洁;黄灏;姚开;;赤霉酸降解菌的筛选及其适宜降解条件的确定[J];安徽农业科学;2012年27期

6 周乐;盛下放;;芘降解菌株的筛选及降解条件的研究[J];农业环境科学学报;2006年06期

7 徐云;金晶;郑重;钟卫鸿;吴石金;邱乐泉;陈建孟;;高活性高耐受甲醛降解菌株的分离鉴定及降解条件研究[J];环境科学;2010年10期

8 王志平;郑连英;徐健全;;油烟废气中脂肪酸降解菌的选育和降解条件[J];食品与生物技术学报;2006年04期

9 熊焰;刘力源;罗睿;朱欢;;1株亚硝酸盐降解菌的筛选、鉴定、降解条件及效果[J];中国水产科学;2010年06期

10 高小朋;徐盈;边志波;王跃;刘仲仲;;一株石油降解菌降解条件的优化[J];食品与发酵工业;2009年06期

相关会议论文 前1条

1 谭靓;曲媛媛;周集体;;一株耐盐活性艳红X-3B脱色菌的分离及特性研究[A];第十次全国环境微生物学术研讨会论文摘要集[C];2007年

相关硕士学位论文 前6条

1 张珊珊;DDT高效降解菌在室内模拟修复中的应用及其降解机理[D];哈尔滨师范大学;2015年

2 徐云;高浓度甲醛降解菌的筛选及降解条件研究[D];浙江工业大学;2010年

3 杨立琼;石油降解菌的筛选及降解条件的优化[D];沈阳大学;2014年

4 唐亮;降解有机磷农药微生物的筛选及降解条件研究[D];西南大学;2008年

5 刘爽;具有菲降解性能的植物内生细菌Pn2分离鉴定、降解条件优化及其定殖初探[D];南京农业大学;2012年

6 李玉梅;耐盐高降解蛋白菌株的筛选及其复合菌株的研究[D];兰州交通大学;2014年



本文编号:1338096

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1338096.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f2a04***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com