当前位置:主页 > 科技论文 > 环境工程论文 >

复合流人工湿地处理小城镇生活污水实验研究

发布时间:2018-01-03 03:18

  本文关键词:复合流人工湿地处理小城镇生活污水实验研究 出处:《河南大学》2016年硕士论文 论文类型:学位论文


  更多相关文章: 人工湿地 复合流 生活污水 小城镇


【摘要】:人工湿地是一种投资省、管理维护简单、处理效果好的污水生态处理技术,被广泛应用于中小城镇、农村地区的生活污水的处理。本实验以芦苇和美人蕉为供试植物构建垂直流人工湿地处理单元,将其串联后组成2个复合流人工湿地处理系统。以模拟生活废水为处理对象,开展了水力停留时间(HRT)、曝气增氧、多点进水等因素对人工湿地系统去除COD、N、P和抗生素的影响研究。主要结论如下:(1)HRT优化实验中,HRT=3.0d时,美人蕉人工湿地系统和芦苇人工湿地系统对各类污染物的去除率最高;芦苇人工湿地系统对COD、TN、NH3-N、TP、PO43-的去除能力高于美人蕉人工湿地系统。随着HRT的增大,美人蕉人工湿地系统和芦苇人工湿地系统中COD、TP、PO43-、四环素、土霉素和金霉素去除率先显著增大再缓慢增大,最高去除率分别为80.72±1.21%、65.67±5.26%、61.82±2.64%、97.27%、91.18%、83.43%和86.99±1.86%、79.38±5.45%、78.08±3.26%、97.71%、91.46%、86.68%,而TN、NH3-N去除率则随HRT增大而一直缓慢增大,最高去除率分别为33.60±0.86%、29.13±2.71%和38.27±4.86%、36.68±3.15%。不同HRT下,人工湿地系统对COD、氮素的去除主要依靠前面两个垂直流湿地单元的降解作用完成的,对磷素的去除则是三个垂直流湿地单元共同作用而完成的,对四环素、土霉素和金霉素的去除则主要是在第一个垂直流湿地单元中完成,这些四环素类抗生素大部分是靠基质的吸附和吸收作用而被去除的。(2)曝气增氧实验中,随气水比的增大,美人蕉人工湿地系统和芦苇人工湿地系统中COD、TN、NH3-N、TP和PO43-去除率均是先迅速增大再缓慢增大,而四环素、土霉素和金霉素去除率随气水比增大,去除率变化不大。芦苇人工湿地系统对总氮和氨氮的去除率高于美人蕉人工湿地系统,而对COD、TP、PO43-、四环素、土霉素和金霉素去除率则与美人蕉人工湿地系统相差不大。气水比为15-45时,人工湿地系统对COD、TP和PO43-的去除率变化不大,此时,COD去除率在83-85%之间,TP和PO43-去除率均高于98%。气水比为15、30和45时,美人蕉人工湿地系统和芦苇人工湿地系统对TN去除率比不曝气时分别提高了14.72%、31.58%、66.56%和32.48%、72.69%、73.52%,对NH3-N去除率比不曝气时分别提高了37.15%、68.69%、78.71%和71.86%、81.54%、84.24%,美人蕉人工湿地系统和芦苇人工湿地系统对四环素、土霉素和金霉素的去除率均在75.65%-79.78%、78.83%-80.46%、52.53%-54.69%之间。综合考虑,曝气量以气水比30为宜。(3)多点进水能够稍微提高人工湿地系统中COD、TN、NH3-N、TP和PO43-的去除效率,同时能够明显提高四环素、土霉素和金霉素的去除效率。美人蕉人工湿地系统与芦苇人工湿地系统去除COD最佳进水流量比分别为1:2和2:1,此时去除效率分别为86.38±2.84%和85.97±3.53%。去除TN、NH3-N、TP、PO43-、四环素、土霉素、金霉素的最佳进水流量比均为1:1。进水流量比为1:0即一端进水时各污染物的去除效率最低,美人蕉人工湿地系统与芦苇人工湿地系统中COD、TN、NH3-N、TP、PO43-、四环素、土霉素和金霉素的去除效率分别为82.34±5.06%、47.31±2.44%、86.84±2.38%、94.91±0.59%、96.71±0.08%、77.37%、79.74%、50.50%和82.16±3.20%、91.50±0.18%、96.50±1.42%、94.64±0.32%、98.54±0.32%、82.39%、77.70%和58.98%。
[Abstract]:Artificial wetland is a kind of investment, simple management and maintenance, sewage ecological treatment technology with good effect, is widely used in small towns and rural areas sewage treatment. In this experiment, reed and Canna as tested plants to construct vertical flow artificial wetland treatment unit, the series consists of 2 composite flow artificial wetland treatment system. In order to simulate domestic wastewater as treatment object, carry out the hydraulic retention time (HRT), aeration, the removal of COD, the artificial wetland system multi influent factors such as N, P and the effects of antibiotics. The main conclusions are as follows: (1) HRT optimization experiment, HRT=3.0d, Canna artificial wetland and reed wetland system on various pollutants removal rate; reed wetland system on COD, TN, NH3-N, TP, PO43- removal than Canna artificial wetland system. With the increase of HRT, Canna artificial wet Land system and reed wetland system COD, TP, PO43-, tetracycline, oxytetracycline and chlortetracycline removal rate increased significantly and then increases slowly, the highest removal rates were 80.72 + 1.21%, 65.67 + 5.26%, 61.82 + 2.64%, 97.27%, 91.18%, 83.43% and 86.99 + 1.86%, 79.38 + 5.45%, 78.08 + 3.26%, 97.71%. 91.46%, 86.68%, and TN, the removal rate of NH3-N is increased with increasing HRT and has been slow, the highest removal rates were 33.60 + 0.86%, 29.13 + 2.71% and 38.27 + 4.86%, 36.68 + 3.15%. under different HRT artificial wetland system on COD, nitrogen removal mainly by degradation on the front of the two vertical flow wetland unit completed, the phosphorus removal is three vertical flow wetland unit work together to complete, removal of tetracycline, oxytetracycline and chlortetracycline are mainly completed in the first vertical flow wetland unit, the tetracycline antibiotics mostly rely on matrix Is the removal of adsorption and absorption. (2) aeration experiment, with the increase of the ratio of gas and water, Canna artificial wetland system and reed wetland system COD, TN, NH3-N, TP and PO43- removal rate was first increased rapidly and then slowly increased, and the removal rate of tetracycline, oxytetracycline and chlortetracycline with the increase of the ratio of gas and water, the removal rate is not changed. The reed wetland system on total nitrogen and ammonia nitrogen removal rate is higher than the Canna artificial wetland system, while the COD, TP, PO43-, tetracycline, oxytetracycline and chlortetracycline removal rate and Canna artificial wetland system had little difference. When the gas water ratio is 15-45, artificial wetland the system of COD, the removal rate of TP and PO43- changed little, at this time, the removal rate of COD between 83-85%, TP and PO43- removal rate was higher than that of 98%. gas water ratio is 15,30 and 45, Canna artificial wetland and reed wetland system on the removal rate of TN than non aeration Were increased by 14.72%, 31.58%, 66.56% and 32.48%, 72.69%, 73.52%, the removal rate of NH3-N than the aeration were increased by 37.15%, 68.69%, 78.71% and 71.86%, 81.54%, 84.24%, Canna artificial wetland and reed wetland system on the removal of tetracycline, oxytetracycline and chlortetracycline were in 75.65%-79.78%, 78.83%-80.46%, 52.53%-54.69%. Considering the amount of aeration in gas water ratio should be 30. (3) multi inlet can slightly improve the artificial wetland system in COD, TN, NH3-N, TP and PO43- removal efficiency, and can significantly improve the removal efficiency of four tetracycline, oxytetracycline and chlortetracycline. Canna artificial wetland system reed wetland system for removal of COD optimal water flow ratio were 1:2 and 2:1, the removal efficiency were 86.38 + 2.84% and 85.97 + 3.53%. NH3-N, removal of TN, TP, PO43-, tetracycline, terramycin aureomycin, optimal water flow ratio 1:1. water flow ratio of 1:0 is the end of the water pollutant removal efficiency is lowest, Canna artificial wetland system and reed wetland system COD, TN, NH3-N, TP, PO43-, tetracycline, oxytetracycline and chlortetracycline removal efficiency were 82.34 + 5.06%, 47.31 + 2.44%, 86.84 + 2.38%, 94.91 + 0.59% 96.71, + 0.08%, 77.37%, 79.74%, 50.50% and 82.16 + 3.20%, 91.50 + 0.18%, 96.50 + 1.42%, 94.64 + 0.32%, 98.54 + 0.32%, 82.39%, 77.70% and 58.98%.

【学位授予单位】:河南大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:X799.3

【参考文献】

相关期刊论文 前10条

1 李丽;杨扬;陶然;钟胜强;张敏;王铭;;垂直流-水平潜流组合湿地对磺胺类抗生素的去除[J];安全与环境学报;2014年03期

2 王子珏;王欣泽;林燕;仝欣楠;孔海南;;处理低污染河水的湿地内氮迁移转化过程模拟[J];环境科学研究;2014年06期

3 杨林;郭晓爽;周越;赖发英;伍斌;高勇生;;不同停留时间下复合流人工湿地沿程净化效果的研究[J];江西农业大学学报;2013年06期

4 吴婧嘉;田光明;朱于红;朱妙军;徐宁;;复合垂直流人工湿地微曝气条件优化研究[J];水处理技术;2013年08期

5 李玉洁;;人工湿地污水处理技术浅析[J];四川化工;2013年03期

6 李伟明;鲍艳宇;周启星;;四环素类抗生素降解途径及其主要降解产物研究进展[J];应用生态学报;2012年08期

7 邢波;章燕;周小龙;谢明华;梁新强;;人工湿地对磷去除影响因素的研究[J];环境卫生工程;2012年03期

8 黄健;赵晓芬;;微生物在人工湿地污水处理中的研究进展[J];海洋湖沼通报;2012年02期

9 李秋红;孙秀田;;浅谈中小城镇污水处理[J];科技信息;2011年23期

10 楚伟伟;王克科;王岩;;曝气对无植物波形潜流人工湿地除氮的影响[J];环境工程学报;2011年07期



本文编号:1372142

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1372142.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户273ef***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com