当前位置:主页 > 科技论文 > 环境工程论文 >

湿法吸收—过氧化物氧化去除—甲胺恶臭气体

发布时间:2018-01-07 19:40

  本文关键词:湿法吸收—过氧化物氧化去除—甲胺恶臭气体 出处:《中国海洋大学》2015年硕士论文 论文类型:学位论文


  更多相关文章: 过氧化物 湿法吸收氧化 一甲胺 Fe~(2+)活化 碱活化


【摘要】:一甲胺(CH3NH2)是一种小分子有机胺,是甲胺类恶臭气体的典型代表之一。CH3NH2(g)嗅阈值低(0.021 ppmv),低浓度时即有强烈的刺激性鱼臭味。其分子结构简单,难被生化降解,是急需治理的大气污染物之一。湿法吸收-过氧化物氧化去除CH3NH2(g)恶臭气体,是指在常温常压下,将CH3NH2(g)吸收到水中,并利用氧化剂将吸收后的CH3NH2(aq)氧化降解,达到恶臭气体去除的目的。过氧化物具有强氧化性,对水中CH3NH2(aq)浓度的测定会造成干扰,因此,首先建立水中CH3NH2(aq)浓度的测定方法;然后进行过氧化物对水中CH3NH2(aq)降解性能的探讨;最终结合前两部分完成湿法吸收-过氧化物氧化去除CH3NH2(g)恶臭气体的目的。过氧化物分别采用过氧化氢(H202)、过一硫酸氢盐(PMS)和过二硫酸盐(PS),探究不同pH、不同活化方式下过氧化物对CH3NH2(g)的去除情况,选取恰当的活化方式,优化实验条件,达到对CH3NH2(g)高效去除的目的。具体的研究内容和结论如下:(1)建立了含强氧化剂溶液中CH3NH2(aq)浓度的测定方法。由于强氧化剂会对分光光度法测定水中CH3NH2(aq)浓度造成干扰,特对样品中的CH3NH2(aq)进行吹脱与吸收实验,分离CH3NH2(aq)达到去除氧化剂干扰的目的。探究了进气速度、吹脱液NaOH浓度、通气时间、吸收液H2SO4浓度等因素对CH3NH2(aq)吹脱与吸收实验的影响。在进气速度为0.3 L/min,NaOH浓度为10mol/L,通气时长为10 min, H2SO4浓度为0.03 mol/L时,CH3NH2(aq)浓度测定方法的相对标准偏差(RSD)为3.66%,相对回收率达88.9-105.9%。因此该方法能够将样品中的CH3NH2(aq)完全提取,避免氧化剂干扰,达到测定含强氧化剂溶液中CH3NH2(aq)浓度的目的。(2)氧化剂对水中CH3NH2(aq)降解性能的研究。为探究湿法吸收-过氧化物氧化去除CH3NH2(g)恶臭气体,首先进行三种氧化剂(H2O2、PMS、PS)降解水中CH3NH2(aq)的实验探究。研究了在不同pH(3~11)条件下,单独过氧化物和经Fe2+活化的过氧化物对水中CH3NH2(aq)的降解能力。单独过氧化物实验中,只有PMS在碱性条件下能够对CH3NH2(aq)进行有效降解,且pH去除能力依次为:11109;在酸性条件下,三种过氧化物的去除效果均不理想。经Fe2+活化过氧化物后,碱性条件下对CH3NH2(aq)的降解能力不变;酸性条件下PS的降解效果显著提高。三种过氧化物对CH3NH2(aq)降解性能不同,推测可能与自身的分子结构有关。(3)重点研究了湿法吸收-铁活化PS对CH3NH2(g)恶臭气体的去除。pH=3时水对CH3NH2(g)恶臭气体的单独吸收性能优良。采用Fe2+活化PS去降解所吸收的CH3NH2(aq),但效果不好。为提高去除效果,比较了单独Fe2+活化、柠檬酸(CA)螯合Fe2+活化、单独Fe0活化、CA联合Fe0活化等4种不同活化方式对CH3NH2(g)湿法氧化去除效果的影响。单独用铁活化PS处理CH3NH2(g)时,CH3NH2(g)去除效果Fe0优于Fe2+;然而在使用CA之后,Fe2+效果优于Fe0。存在差异的原因,可能是不同活化方式下Fe2+释放速率不同引起的,Fe2+的释放速率影响了Fe2+的存在时间,从而影响PS的活化分解,进一步对CH3NH2(g)的去除效果产生影响。(4)研究了湿法吸收-碱活化PMS对CH3NH2(g)恶臭气体的去除。探究了PMS浓度和OH-浓度等因素对CH3NH2(g)湿法吸收去除的影响,同时对何种自由基起主导作用进行了探究。进气速率固定时,水在碱性条件下对CH3NH2(g)的吸收与酸性条件下的吸收能力相比近乎相同,因此,碱活化PMS的方式不会对水吸收CH3NH2(g)造成影响。CH3NH2(g)去除效果随着PMS浓度和OH-浓度的升高而升高,缓冲溶液调pH能够提高去除效果。在此条件下HO·对CH3NH2(g)去除起主导作用,原因可能在于HO·能够与分子态的CH3NH2(aq)迅速反应。
[Abstract]:Methylamine (CH3NH2) is a small molecule organic amine methylamine, is one of the typical representatives of malodorous gases.CH3NH2 (g) low odor threshold (0.021 ppmv), low concentration has a strong pungent smell of fish. Its molecular structure is simple, hard to be degraded, is one of the urgent need of the governance of air pollutants the removal of CH3NH2. Wet peroxide oxidation absorption (g) refers to the malodorous gas at room temperature and atmospheric pressure, CH3NH2 (g) to absorb water, and use of oxidant CH3NH2 (AQ) will be absorbed after oxidative degradation, achieve the aim of removing malodorous gases. Peroxide has strong oxidation in water, CH3NH2 (AQ) determination of the concentration will cause interference, therefore, first established in CH3NH2 (AQ) method for the determination of the concentration of CH3NH2 in water; then the peroxidase (AQ) to investigate the degradation performance; finally the combination of the first two parts to complete removal of CH3NH2 absorption - wet peroxide oxidation (G) malodorous gases The purpose of using hydrogen peroxide. The peroxide (H202), a salt of hydrogen sulfate (PMS) and two (PS), to explore the different sulfate pH, different activation mode of peroxide on CH3NH2 (g) removal, select the appropriate mode of activation, optimizing the experimental conditions, to reach CH3NH2 (g) removal purpose. The specific research contents and conclusions are as follows: (1) established a strong oxidant in the solution containing CH3NH2 (AQ) method for the determination of concentration. Due to the strong oxidizing agent will CH3NH2 in water by spectrophotometry (AQ) concentration caused by interference, especially on samples of the CH3NH2 (AQ) stripping and absorption the separation of CH3NH2 (AQ) to remove the oxidant interference. To explore the inlet speed, stripping liquid NaOH concentration, ventilation time, factors of absorption liquid H2SO4 concentration on the removal effect of CH3NH2 (AQ) blowing experiment. In the intake and absorption rate of 0.3 L/min, NaOH concentration is 10mol/L, ventilation time 10 min, H2SO4 concentration was 0.03 mol/L, CH3NH2 (AQ) method for the determination of the relative standard deviation (RSD) was 3.66%, the relative recovery rate reached to 88.9-105.9%. so that the method in the sample of CH3NH2 (AQ) completely extracted, to avoid interference to the determination of the content of oxidant, strong oxidant solution CH3NH2 (AQ the concentration of purpose.) (2) CH3NH2 oxidant in water (AQ). To explore the degradation performance of wet peroxide oxidation absorption and removal of CH3NH2 (g) malodorous gases, first three oxidants (H2O2, PMS, PS) degradation of CH3NH2 (AQ). The experiment studied under different pH (3 ~ 11) under the condition of separate peroxides and activated by Fe2+ peroxidase CH3NH2 in water (AQ). The degradation ability of peroxide alone in the experiment, only PMS under alkaline conditions to CH3NH2 (AQ) for effective degradation and pH removal capacity is as follows: 11109 in acidic conditions, three; Removal of peroxides are not ideal. The activation of Fe2+ peroxidase, alkaline condition of CH3NH2 (AQ) constant degradation capability; the effect of PS degradation under acidic conditions significantly improved. Three kinds of peroxidase CH3NH2 (AQ) degradation performance of different, that may be related with its molecular structure. (3) focus on wet absorption - iron activated PS CH3NH2 (g) of malodorous gas removal of.PH=3 on CH3NH2 (g) malodorous gases alone excellent absorption. Activation of PS absorbed by Fe2+ to the degradation of CH3NH2 (AQ), but the effect is not good. In order to improve the removal efficiency, compared with the activation of Fe2+, lemon acid (CA) Chelating Fe2+ activation, single Fe0 activation, activation of Fe0 CA combined with 4 different activation methods on CH3NH2 (g) effect of wet oxidation removal. Alone with iron activated PS processing CH3NH2 (g), CH3NH2 (g) removal effect of Fe0 is better than Fe2+; however, after using CA, F E2+ Fe0. is better than the differences, may be the release rate of Fe2+ under different activation caused by different, the release rate of Fe2+ affects the existence time of Fe2+, thus affecting the activation of PS, CH3NH2 (g) to further affect the removal effect. (4) studied the wet absorption alkali activated PMS on CH3NH2 (g) removal of malodorous gases. To explore the factors of PMS concentration and OH- concentration on CH3NH2 (g) removal effect and wet absorption, and what kind of free radicals play a leading role in the probe. The intake rate is fixed, the water in the alkaline condition of CH3NH2 (g) absorption capacity and absorption under acidic conditions compared with almost the same, therefore, PMS would not be the way of alkaline activated water absorption of CH3NH2 (g) caused by the influence of.CH3NH2 (g) removal efficiency increased with the increase of PMS concentration and OH- concentration, buffer solution pH can improve the removal efficiency. Under this condition HO. The main reason for CH3NH2 (g) removal may be that HO is able to react quickly with the molecular state CH3NH2 (AQ).

【学位授予单位】:中国海洋大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X512

【相似文献】

中国期刊全文数据库 前10条

1 傅汝文,吴中衍;湿法散堆蔗渣场地面防腐实践[J];广西轻工业;1998年04期

2 魏正坤;;湿法两段一闭路粉磨技术及其应用情况[J];磷肥与复肥;2006年04期

3 刘丽君,汤宝龙;过氧化氢湿法氧化模拟有机污物的研究[J];核化学与放射化学;2005年01期

4 向红霞;罗琳;薛伟;;冶锌废渣中铜锌镉的湿法回收试验研究[J];矿业研究与开发;2009年01期

5 徐春生;湿法一步法制膏工艺的研究[J];日用化学工业;1993年01期

6 蔺小力;;水泥立窑湿法收尘技术研究的新进展[J];环境科学与管理;2008年11期

7 段晨龙;赵跃民;叶璀玲;石常省;张洪建;;废弃电路板湿法破碎粒度特性研究[J];中国矿业大学学报;2008年01期

8 焦志良;陈为亮;张旭;朱玉平;许康;齐妍洁;;从二次含铅物料中湿法回收铅的研究现状[J];湿法冶金;2014年02期

9 倪丽娜;李沪萍;罗康碧;苏毅;;磷矿的湿法分解研究现状[J];化工科技;2013年01期

10 林萱,石玉敏,庞丹,雷静艳;湿法提纯金工艺的改进[J];黄金;1997年05期

中国重要会议论文全文数据库 前7条

1 叶其辉;李核;常玉;孙艳辉;陈红雨;;提高湿法提纯多晶硅回收率的方法[A];第二十八届全国化学与物理电源学术年会论文集[C];2009年

2 王涛;刘军;孙轶敏;方梦祥;;湿法再生CO_2吸附动力学试验研究[A];高等学校工程热物理第十九届全国学术会议论文集[C];2013年

3 茆平;孙丙诚;杨毅;陈守文;;纳米二氧化钛粉尘湿法采样研究[A];2010年海峡两岸环境与能源研讨会摘要集[C];2010年

4 刘盛余;徐圆圆;曲兵;;湿法脱除烟气中NO的研究现状[A];成都市科技年会分会场——世界现代田园城市空气环境污染防治学术交流会论文集[C];2010年

5 杨毅;周先国;王正萍;沈才萍;张敏;朱斌;;纳米TiO_2粉尘干法湿法采集对比研究[A];中国颗粒学会第六届学术年会暨海峡两岸颗粒技术研讨会论文集(上)[C];2008年

6 苏继新;王晓鹏;牟真;聂玉伦;张莹;王春海;;湿法烟气处理废水中NO_2~-、NO_3~-的生成机理研究[A];中国化学会第七届水处理化学大会暨学术研讨会会议论文集[C];2004年

7 檀正东;史建卫;周旋;王海英;杜彬;;新型高效湿法锡渣分离技术[A];2014中国高端SMT学术会议论文集[C];2014年

中国硕士学位论文全文数据库 前10条

1 霍梅青;湿法吸收—过氧化物氧化去除—甲胺恶臭气体[D];中国海洋大学;2015年

2 柴硕;水下湿法多道焊接热循环特征分析及冶金行为预测[D];天津大学;2014年

3 张玉国;湿法氧化于垂直腔面发射激光器应用[D];吉林大学;2014年

4 黄艺;尿素湿法联合脱硫脱硝技术研究[D];浙江大学;2006年

5 明磊凌;亚铁络合吸收湿法脱硫脱硝试验研究[D];哈尔滨工业大学;2010年

6 余少强;水玻璃旧砂湿法再生污水硅藻处理试验研究[D];华中科技大学;2013年

7 韩纪昱;湿法炼金中溶解氧监测技术研究及仪器设计[D];浙江大学;2014年

8 Juan Felipe Cerdas Marín;基于LCA的废铅酸蓄电池湿法和火法回收工艺环境影响比较研究[D];华中科技大学;2013年

9 肖灵;氧化结合钙基湿法脱除NO_x的工艺研究[D];浙江大学;2011年

10 严召;Zn/Fe体系湿法催化氧化高效脱除沼气中H_2S回收硫磺研究[D];湘潭大学;2008年



本文编号:1393988

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1393988.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户cd159***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com