粉末活性炭—膜生物反应器处理含铁、含锰、含氨氮地下水研究
本文关键词:粉末活性炭—膜生物反应器处理含铁、含锰、含氨氮地下水研究 出处:《哈尔滨工业大学》2015年硕士论文 论文类型:学位论文
更多相关文章: MBR 铁锰氨氮共同去除 地下水 膜污染 高通量测序
【摘要】:地下水中同时含铁、含锰和含氨氮是一个较普遍的问题,铁、锰和氨氮的污染对人类饮用水的健康造成了一定的威胁。本文针对哈尔滨某地地下水源水含铁、锰、氨氮(Mn2+=1.0 mg/L,Fe2+=15 mg/L,NH4+-N=1.8 mg/L)的特点,构建粉末活性炭-膜生物反应器(PAC-MBR)对此种水进行去除效能及膜污染研究。为了考查PAC-MBR的抗污染负荷,本试验研究MBR采用三种进水,一种是地下水原水,另外两种是不同曝气量(DO为9 mg/L和6 mg/L)情况下接触氧化生物滤池出水。首先,考查溶解氧分别为9 mg/L和6 mg/L时接触氧化砂滤池铁、锰、氨氮的出水效果,明确PAC-MBR进水生物滤池控制参数。试验结果表明,在溶解氧为9mg/L时,滤柱成熟后,铁、锰、氨氮的出水浓度分别低于0.12 mg/L、0.1 mg/L、0.02 mg/L;在溶解氧为6 mg/L的滤柱,铁、锰、氨氮的出水浓度分别为0.15 mg/L、0.2 mg/L和1.0 mg/L。其次,PAC-MBR系统处理不同含量的铁、锰、氨氮进水时,在进水为滤后水的两个膜池中分别投加PAC为1 g/L和4 g/L,在进水为原水的膜池中投加PAC为2 g/L。3个系统中,锰的出水都能达到0.05 mg/L,氨氮达到0.02 mg/L,在进水为滤后水的两个系统铁出水低于0.08 mg/L,进水为原水的系统铁出水低于0.15 mg/L。活性炭投量的增加会缩减除铁、除锰成熟期,从45天到40天,对除氨氮没有影响,污染物浓度的增加会增加除铁、除锰、除氨氮的成熟期,分别从48天到45天、50天到45天、35天到20天,且最终出水铁稳定浓度会受到进水污染物浓度的影响,进水为源水和滤后水的出水铁为0.15 mg/L和0.05 mg/L。此外,在膜污染方面,经过长达222天的连续运行发现,变换进水的单一系统中(PAC投量为2 g/L的系统),污染物浓度的升高(由砂滤出水变为地下水原水),跨膜压差增长迅速,在0-140天里跨膜压差增长了9.1 k Pa,在140-222天共82天里增长了32.6 k Pa;不同粉末活性炭投加量(1 g/L和4 g/L)的系统处理砂滤出水时,在0-140天增加了8.1 k Pa,在140-222天共82天增加了16.5 k Pa,在PAC投量为4 g/L的系统,在0-140天增加了6.7 k Pa,在140-22天共82天增加了3.7 k Pa,PAC投加量增加,膜污染减轻;比较PAC-MBR系统中PAC投量和污染物浓度的比率,PAC投量多(4 g/L),污染物物浓度低(滤后水)的系统膜污染最轻,PAC投加量少(1 g/L),污染物浓度低(滤后水)和PAC投加量较少(2 g/L),污染物浓度高(原水)的系统膜污染均比较严重。而且,本文采用高通量测序对于接触氧化砂滤柱在溶解氧分别为9 mg/L和6 mg/L条件下的锰砂和PAC-MBR系统中PAC投量为4 g/L和2 g/L的膜表面以活性炭为主的沉积物进行分析,发现4个样品中均出现了已知的铁锰细菌和硝化细菌,其中在砂滤柱中Hyphomicrobium(生丝微菌属)、Flavobacterium(黄杆菌属)和Planctomyces(浮霉状菌属)、Nitrosomonas(亚硝化单胞菌属)为优势菌种,在PAC-MBR系统中Pseudomonas(假单胞菌属)、Nitrospira(硝化螺菌属)和Leptothrix(纤发菌属)为优势菌种。
[Abstract]:The contamination of iron, manganese and ammonia nitrogen in groundwater is a common problem. The pollution of iron, manganese and ammonia nitrogen has posed a certain threat to the health of human drinking water. Manganese, ammoniacal nitrogen, mn _ 2, 1.0 mg 路L ~ (-1) Fe _ (2), 15 mg / L ~ (-1) NH _ 4-N ~ (1. 8 mg 路L ~ (-1)). PAC-MBR was constructed to study the removal efficiency and membrane fouling of this kind of water in order to investigate the anti-fouling load of PAC-MBR. In this experiment, three kinds of influent were used in MBR, one was groundwater raw water, the other two were contact oxidized biofilter effluent with different aeration amount of 9 mg/L and 6 mg / L. The effluent effects of iron, manganese and ammonia nitrogen in contact with oxidized sand filter were investigated when dissolved oxygen was 9 mg/L and 6 mg/L, respectively, and the control parameters of PAC-MBR influent biofilter were determined. When the dissolved oxygen is 9 mg / L, the effluent concentrations of Fe, mn and NH _ 3-N are lower than 0.12 mg / L ~ (0.1 mg / L ~ (-1)) and 0.02 mg / L respectively when the filter column is mature. When the dissolved oxygen is 6 mg/L, the effluent concentration of Fe, mn and NH3-N is 0. 15 mg / L ~ 0. 2 mg/L and 1. 0 mg 路L ~ (-1) 路L ~ (-1), respectively. When different contents of iron, manganese and ammonia nitrogen were treated by PAC-MBR system, the PAC was 1 g / L and 4 g / L respectively in the two membrane ponds in which the influent was filtered. In the membrane tank with PAC of 2 g / L.3, the effluent of manganese can reach 0. 05 mg / L and ammonia nitrogen can reach 0. 02 mg/L. When the influent is filtered, the iron effluent is less than 0.08 mg / L, and the influent is lower than 0.15 mg 路L ~ (-1). The increase of activated carbon dosage will reduce the iron removal and manganese removal maturity period. From 45 days to 40 days, there was no effect on ammonia nitrogen removal. The increase of pollutant concentration would increase the maturation period of iron removal, manganese removal and ammonia nitrogen removal, from 48 days to 45 days, 50 days to 45 days and 35 days to 20 days, respectively. And the final effluent iron stability concentration will be affected by the influent pollutant concentration, the influent source water and filtered water effluent iron is 0. 15 mg/L and 0. 05 mg / L. in addition, in the membrane fouling. After 222 days of continuous operation, it was found that the concentration of pollutants increased (from sand filtered water to groundwater raw water) in the system with 2 g / L PAC in the single system. The transmembrane pressure difference increased rapidly from 0-140 days to 9.1 KPA, and from 140-222 days to 82 days, it increased by 32.6 KPA. The sand filtration system with different powder activated carbon dosages of 1 g / L and 4 g / L increased 8.1 KPA in 0-140 days. In 140-222 days, there was an increase of 16.5kPa in 82 days, and 6.7 KPA in the system with PAC dosage of 4 g / L in 0-140 days. In 140-22 days, the dosage of PAC was increased and the membrane fouling was reduced. Compared with the ratio of PAC dosage to pollutant concentration in PAC-MBR system, the membrane fouling of the system with low pollutant concentration (filtered water) was the least. The membrane fouling of the system with low dosage of PAC, low concentration of pollutants (filtered water) and less dosage of PAC, and high concentration of pollutants (raw water) were serious. In this paper, high throughput sequencing was used to determine the PAC dosages of 4 g / L and 2 g / L in manganese sand and PAC-MBR system with dissolved oxygen of 9 mg/L and 6 mg/L, respectively. The membrane surface of g / L was analyzed by activated carbon sediment. The known ferromanganese bacteria and nitrifying bacteria were found in the four samples, among which Hyphomicrobium was found in the sand filter column. Flavobacterium (Flavobacterium) and Planctomyces (Flavobacterium) and Planctomyces (Nitrosomonas) were the dominant species. Pseudomonas (Pseudomonas) and Leptothrix were dominant strains in PAC-MBR system.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X523;TU991.2
【参考文献】
相关期刊论文 前10条
1 尹雅芳;刘德深;李晶;苗迎;吴旺发;;中国地下水污染防治的研究进展[J];环境科学与管理;2011年06期
2 黄冠星;孙继朝;荆继红;汪珊;杜海燕;刘景涛;陈玺;张玉玺;狄效斌;支兵发;;珠江三角洲地区地下水铁的分布特征及其成因[J];中国地质;2008年03期
3 文冬光;林良俊;孙继朝;张兆吉;姜月华;叶念军;费宇红;钱永;龚建师;周迅;张玉玺;;中国东部主要平原地下水质量与污染评价[J];地球科学(中国地质大学学报);2012年02期
4 李冬,杨宏,张杰;首座大型生物除铁除锰水厂的实践[J];中国工程科学;2003年07期
5 曾辉平;李冬;高源涛;赵焱;李灿波;张杰;;生物除铁除锰滤层的溶解氧需求及消耗规律研究[J];中国给水排水;2009年21期
6 陈正清,别东来,钟俊;不同滤料除铁除锰效果研究[J];环境保护科学;2005年03期
7 刘清海;浩良河水泥厂高含铁地下水净化设计小结[J];给水排水;1996年07期
8 周鹏;;地下水中铁和锰的危害及去除方法[J];山西建筑;2008年23期
9 谢江宁;阎喜武;;总氨对水生生物毒性的研究进展[J];科学养鱼;2008年08期
10 王振兴;王鹤立;李向全;侯新伟;刘玲霞;;地下水除铁除锰技术研究进展[J];环境工程;2012年S2期
,本文编号:1416068
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1416068.html