青岛市颗粒物和臭氧浓度特征及形成过程分析
本文关键词:青岛市颗粒物和臭氧浓度特征及形成过程分析 出处:《中国海洋大学》2015年硕士论文 论文类型:学位论文
更多相关文章: WRF-CMAQ PM_(2.5)和O_3 日变化 主控因素 贡献来源
【摘要】:随着全球城市化和工业化的加快,O3和PM2.5污染已成为了全球最为严重的大气污染问题,而区域性、复合型的大气污染更是我国面临的严峻环境问题。因此本研究旨在探讨大气O3和PM2.5的生成过程和控制因素,研究重度霾污染区域对周边地区大气污染的影响,为国家区域大气污染控制对策提供理论基础。本论文选择青岛市为重点研究区域,利用WRF-CMAQ模式对2013年5月17至6月7日(非采暖期)和11月8至12月7日(采暖期)青岛市以及中国东部地区O3和PM2.5进行模拟研究,并与青岛市空气质量监测子站观测数据对比,探究模拟误差原因;采用综合过程速率分析方法(IPR)量化不同大气物理和化学过程对青岛市O3和PM2.5浓度变化的贡献:利用O3/NOx和PH2O2/PHNO3指示剂法探讨青岛市O3的主要控制因素;通过情景模拟方案研究华北区域霾污染对青岛市PM2.5浓度影响。模拟结果显示,WRF-CMAQ模型能够合理的模拟出青岛市在非采暖期和采暖期O3和PM2.5的变化特征。青岛市非采暖期和采暖期O3的模拟值与观测值的R2分别为0.13和0.21,标准化平均偏差分别为71.1和95.9%;NOx源排放偏差导致其O3浓度高估。而非采暖期和采暖期青岛市PM2.5的模拟值与观测值的R2分别为0.20和0.21,标准化平均偏差分别为-21.8%和-14.3%;气象模式对气流、大气边界层和降水的模拟误差,以及二次有机颗粒物生成机制的不完整,是造成模拟与实测PM2.5变化趋势差异的原因。大气O3生成过程分析结果显示,不同过程对青岛市近地面O3日变化贡献在非采暖期和采暖期基本一致。其主要来源过程为垂直传输,清除过程为水平传输、干沉降和气相化学过程。而不同过程对青岛市不同高度O3日变化贡献在非采暖期和采暖期存在差异,其中在非采暖期垂直传输至青岛市近地面的臭氧是由气相化学作用在100m高度以上大气中形成,以及在240m以上由周围区域水平传输而来。而在采暖期垂直传输至青岛市近地面的臭氧是由气相化学作用在240m高度以上大气中形成;以及在500m以上由周围区域水平传输而来。大气PM2.5生成过程分析结果显示,不同过程对青岛市不同高度PM2.5日变化贡献在非采暖期和采暖期呈现不同。在非采暖期,近地面PM2.5来源过程为源排放、雾化学过程以及出现在下午至次日早晨的垂直传输,去除过程为水平传输、气溶胶化学过程、干沉降以及出现在中午的垂直传输;并且在非采暖期垂直传输至青岛市近地面PM2.5的主要来源除了源排放外,是由气溶胶化学过程在40m以上空中生成,以及在240m以上由周围区域水平传输而来。而在采暖期,近地面PM2.5的主要来源为源排放,主要去除过程为水平传输、干沉降、气溶胶化学过程以及出现在中午的垂直传输和雾化学过程:而采暖期青岛市近地面PM2.5的主要垂直来源是由雾化学过程在100m以上空中生成,以及500米以上空中从周围区域水平传输而来。O3/NOx和PH2O2/PHNO3指示剂模拟结果显示,在非采暖期青岛市位于中国沿海VOC控制带中,其O3生成受VOC和NOx协同控制或VOC控制;而在采暖期,沿海VOC控制带向内陆扩展,青岛市O3生成在该时期受VOC控制。情景模拟方案结果显示,在非采暖期消减华北区域的NH3和SO2可以最好的控制青岛市PM2.5浓度:在采暖期消减NH3和NOx排放,对PM2.5降低最显著。并且华北地区不同区域对青岛市PM25贡献不同,北京天津河北地区、山东西北部区域和青岛市区域对青岛市PM2.5贡献分别为27.4%、28.5%和24.1%。其中北京天津河北地区主要对青岛市贡献了NO3-和NH4+,SO42-的主要贡献区域可能为烟台市。因此在非采暧期控制青岛市O3和PM2.5污染可以通过减少华北区域的VOC和SO2工业排放;但在采暖期虽然减少华北区域(特别是京津冀地区)的NOx排放可以有效控制青岛市PM2.5浓度,但是由于其O3受VOC控制,反而会增加O3的浓度。所以要有效治理青岛市采暖期O3和PM2.5污染,除了考虑单一污染物控制因素外,还要综合大气污染物复合的特点。
[Abstract]:With the development of global city and speed up the industrialization of O3 and PM2.5 pollution has become the most serious air pollution problems for global and regional air pollution, the compound is even more serious environmental problems in China. Therefore, this study aims to investigate the formation process and control factors of atmospheric O3 and PM2.5, effects of severe haze the contaminated area to air pollution in the surrounding areas, for the national and regional air pollution control measures to provide a theoretical basis. This paper chooses Qingdao city as the key research area, in May 2013 17 to June 7th by using the WRF-CMAQ model (non heating period) and November 8 to December 7th (heating period) of Qingdao city and the eastern China O3 and PM2.5 simulation and, compared with the observation data of air quality monitoring in Qingdao City, explore the simulation error reason; using analysis method for integrated process rate (IPR) to quantify the different atmospheric physical and chemical. History contribution to Qingdao O3 and PM2.5 concentration, the main control of Qingdao O3 using O3/NOx and PH2O2/PHNO3 indicator method; simulated impact of North China regional haze pollution on the concentration of PM2.5 in Qingdao city. The simulation results show that the WRF-CMAQ model can reasonably simulate the variation characteristics in Qingdao city and non heating period the heating period O3 and PM2.5. Simulation of heating and heating period O3 and observed values of R2 were 0.13 and 0.21 in Qingdao, the standardization of the average deviation is 71.1 and 95.9% respectively; NOx emission bias leads to the concentration of O3 overestimated. Rather than analog PM2.5 in Qingdao city during heating and heating period and value observations of R2 were 0.20 and 0.21, the average standard deviation is -21.8% and -14.3% respectively; meteorological model on the flow simulation of the atmospheric boundary layer error and precipitation, and two organic particle formation mechanism. The whole, is the cause of the simulated and measured PM2.5 trend differences. The analytical results of atmospheric O3 generation process shows that the contribution to Qingdao city surface O3 diurnal variation of different processes are basically the same in the non heating period and the heating period. The main source for vertical transmission, removing horizontal transmission, dry deposition and gas phase chemical process. The different process of Qingdao in different height O3 diurnal variation contribution difference in heating period and non heating period, which in the near ground unheating vertical transfer to Qingdao City, ozone is formed by gas phase chemical reaction at the height of 100m above the atmosphere, as well as in the area around the level above 240m by transmission in. Near the ground heating period of vertical transfer to Qingdao City, ozone is formed by gas phase chemistry in 240m height above the atmosphere; and more than 500m in the area around the level of transmission and the production of PM2.5 atmosphere. The analysis results showed that the different process of Qingdao in different height PM2.5 diurnal variation showed different contribution in heating period and non heating period. In the non heating period, near ground PM2.5 source as the source of emissions, chemical fog process and appear in the afternoon until the next morning the vertical transmission and horizontal transmission for the removal process, aerosol chemical process. Dry deposition as well as appear in the vertical transmission at noon; and the main source in the non heating period vertical transfer to Qingdao City, near the ground PM2.5 in addition to the source of emissions, is generated in the air above 40m by aerosol chemical process, as well as in the 240m above by the area around the horizontal transmission while in the heating period, the main source of near ground PM2.5 the sources, the main removal process for the settlement of horizontal transfer, dry aerosol chemical process and in vertical transmission and fog chemical process at noon: heating period in Qingdao city near the ground PM2 The main source of.5 is to generate vertical air above 100m by spray chemical process, as well as 500 meters above the air from the surrounding area and level of transmission.O3/NOx and PH2O2/PHNO3 indicator simulation results show that the non heating period in Qingdao city is located in the coastal zone of Chinese VOC control, the O3 generated by the cooperative control or VOC control VOC and NOx; and in the heating period, the coastal zone VOC control to extend inland city of Qingdao O3 generated by the VOC control in this period. Scenarios simulation results show that the non heating period in North China region NH3 and subtractive SO2 can PM2.5 concentration control in Qingdao: the best in the heating period to cut the NH3 and NOx emissions of PM2.5 decreased most significantly. And in different regions of North China in Qingdao city PM25 Beijing Tianjin Hebei area with different contribution, northwest Shandong area and Qingdao City area of Qingdao City, PM2.5 were 27.4%, 28.5% and 24.1%. in the Tianjin River in Beijing North Main NO3- and NH4+ contribution to the city of Qingdao, the main contribution of regional SO42- possible for the city of Yantai. In the non heating period in Qingdao city O3 and PM2.5 pollution can be reduced by VOC and SO2 in North China regional industrial emissions; but in the heating period while reducing North China region (especially the Beijing Tianjin Hebei region) NOx can effectively control the emission concentration of PM2.5 in Qingdao City, but because of the O3 controlled by VOC, but will increase the concentration of O3. So the effective management of heating period in Qingdao O3 and PM2.5 pollution control factors, in addition to considering the single pollutant, but also comprehensive air pollution characteristics of composite.
【学位授予单位】:中国海洋大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X51
【参考文献】
相关期刊论文 前10条
1 张红星;孙旭;姚余辉;万五星;肖扬;孙滨峰;William J.Manning;韩春萌;郜世奇;高付元;徐卫华;冯兆忠;欧阳志云;王效科;;北京夏季地表臭氧污染分布特征及其对植物的伤害效应[J];生态学报;2014年16期
2 张浩月;王雪松;陆克定;张远航;;珠江三角洲秋季典型气象条件对O_3和PM10污染的影响[J];北京大学学报(自然科学版);2014年03期
3 王茜;;上海市秋季典型PM_(2.5)污染过程数值预报分析[J];中国环境监测;2014年02期
4 韩霄;张美根;;2013年1月华北平原重霾成因模拟分析[J];气候与环境研究;2014年02期
5 杨晓春;赵荣;吴其重;乔娟;唐文哲;刘峰;薛荣;曹梅;;西安空气质量预报系统及检验[J];陕西气象;2014年02期
6 聂滕;李璇;王雪松;邵敏;张远航;;北京市夏季臭氧前体物控制区的分布特征[J];北京大学学报(自然科学版);2014年03期
7 郝吉明;李欢欢;沈海滨;;中国大气污染防治进程与展望[J];世界环境;2014年01期
8 朱凌云;韩霄;安炜;高怡;;气象条件对华北地区PM_(2.5)浓度影响的模拟研究[J];科技与创新;2014年02期
9 冯静;董君;陶红蕾;;青岛市环境空气臭氧污染特征分析[J];干旱环境监测;2013年04期
10 梁永贤;尹魁浩;胡泳涛;廖汝娥;刘宝章;;深圳市机动车限行对臭氧浓度影响分析[J];环境科学与技术;2013年01期
相关博士学位论文 前2条
1 邢佳;大气污染排放与环境效应的非线性响应关系研究[D];清华大学;2011年
2 刘晓环;我国典型地区大气污染特征的数值模拟[D];山东大学;2010年
相关硕士学位论文 前4条
1 邱凯琼;工业源挥发性有机物减排潜力及其对空气质量的影响研究[D];华南理工大学;2014年
2 申倩倩;上海地区臭氧数值模拟研究[D];华东师范大学;2011年
3 李海燕;青岛市环境空气质量改善途径研究[D];中国海洋大学;2006年
4 朱帅;长江三角洲臭氧和气溶胶数值模拟研究[D];中国气象科学研究院;2006年
,本文编号:1416687
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1416687.html