电化学方法去除水体中罗丹明B与林可霉素的研究
发布时间:2018-03-12 18:13
本文选题:罗丹明B 切入点:林可霉素 出处:《华中师范大学》2015年硕士论文 论文类型:学位论文
【摘要】:当今社会经济发展迅速,带来了日益突出的水环境污染问题。饮用水存在极大的安全隐患,甚至危及到人类的生命安全。因此,各国环境研究人员致力于水资源的修复工作,提出各种污水治理方案。在这些技术手段中,电化学技术由于其绿色环保、成本低廉且无二次污染得到了广泛关注。本文中,我们分别采用Fe2O3/ACF体系与Pt/ACF电化学处理体系,实现了对污染物罗丹明B与林可霉素的有效降解,为污染物治理提供了一个可行的途径。第一章中,我们首先通过水热方法合成了不同形貌的Fe2O3纳米材料,并利用SEM与TEM研究了Fe2O3纳米材料的微观结构及其暴露晶面。随后以Fe2O3纳米材料为阴极活性材料,研究了电Fenton过程中污染物降解过程与氧化铁微观结构之间的关系。结果表明,{110}晶面暴露的Fe2O3降解罗丹明B污染物的速率远大于{001}晶面暴露的Fe2O3,其主要原因是不同暴露晶面Fe2O3表面产生Fe(Ⅱ)的过程存在明显区别。通过电化学方法,我们研究了Fe2O3不同暴露晶面上与表面Fe(Ⅱ)的产生过程。同时,我们意外发现Fe2O3的不同暴露晶面也显著影响了分子氧活化过程。尽管两种不同晶面Fe2O3表面产生·OH自由基的量比较接近,但产生的O2-自由基的量却差别较大。经过实验结果分析,我们认为在通电条件下,Fe2O3的{110}暴露晶面不仅能产生·OH,而且有利于O2单电子还原产生O2-;而在{001}面累积的大部分为·OH。体系产生O2的过程区别是导致不同晶面Fe2O3降解罗丹明B速率不同的主要原因。第二章中,我们首先研究了电流密度、溶液pH以及污染物浓度对Pt/ACF体系降解林可霉素速率的影响。在单池体系中,林可霉素除了能够在阳极被氧化降解外,林可霉素及其在Pt电极表面氧化的产物也会被吸附在阴极ACF表面。ACF可以增强体系去除林可霉素的效果,实现抗生素的有效去除与富集。同时双池体系验证了体系中Pt电极的氧化作用与ACF的吸附作用对林可霉素的去除是协同作用而非叠加作用。但是,该体系林可霉素并没有发生矿化,只能促进污染物中有机N向无机N转化。在整个过程中,由于不加入其它化学试剂,避免了化学试剂带来的二次污染并且绿色环保。
[Abstract]:Nowadays, with the rapid development of society and economy, the problem of water environment pollution is becoming more and more prominent. Drinking water has great potential safety problems, even endangering the safety of human life. Therefore, environmental researchers from all over the world devote themselves to the restoration of water resources. In this paper, Fe2O3/ACF system and Pt/ACF electrochemical treatment system are adopted, respectively, in which electrochemical technology is widely concerned because of its green environmental protection, low cost and no secondary pollution. The effective degradation of Rhodamine B and lincomycin provides a feasible way for the treatment of pollutants. In Chapter 1, different morphologies of Fe2O3 nanomaterials were synthesized by hydrothermal method. SEM and TEM were used to study the microstructure and exposed crystal plane of Fe2O3 nanomaterials, and then Fe2O3 nanomaterials were used as cathode active materials. The relationship between the degradation process of pollutants and the microstructure of iron oxide in the process of electric Fenton was studied. The results show that the rate of degradation of Rhodamine B pollutants by Fe2O3 exposed to {110} crystal plane is much higher than that of Fe _ 2O _ 3 exposed to {001} crystal plane. The main reason is that the degradation rate is different. There are obvious differences in the process of Fe (鈪,
本文编号:1602711
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1602711.html
最近更新
教材专著