对甲苯磺酸高效降解菌的筛
本文选题:p-TSA + 施氏假单胞菌Y-2 ; 参考:《南京农业大学》2015年硕士论文
【摘要】:对甲苯磺酸(p-TSA)是一种广泛应用于工业中的重要的化工原料,含p-TSA的废水大量排放到环境中,会对人类健康以及生态环境造成严重威胁。本论文从江苏丰山制药厂废水处理池活性污泥中,通过富集、分离,筛选出一株能以p-TSA为唯一碳源生长的菌株,命名为Y-2。该菌株能够在16h内将200mg/L的p-TSA完全降解。经鉴定,菌株Y-2为革兰氏阴性菌,根据其生理生化特征以及16s rRNA基因序列同源性比较,菌株Y-2被鉴定为施氏假单胞菌(Pseudomonasstutzeri)。菌株Y-2在LB培养基中生长良好,0-5h菌株处于延滞期,5h开始,菌株进入对数生长期,16h-25h菌株为稳定期,25h后菌株逐渐衰亡。菌株Y-2生长的最适温度为30°C,最适pH为7.0-8.0;菌株Y-2为严格好氧菌,通气量越多,菌株生长越好;NaCl浓度也对菌株的生长有影响,菌株Y-2在NaCl浓度为5-15g/L时长势较好,菌株生长最适的NaCl浓度为10g/L。降解菌Y-2可利用葡萄糖、果糖和麦芽糖等碳源,但是不能利用蔗糖、甘露醇、木糖等碳源;能利用蛋白胨、硫酸铵和氯化铵等氮源,也可以利用硝态氮,但不能利用尿素。菌株Y-2可以在16h之内完全降解浓度为200mg/L的p-TSA。菌株降解p-TSA的最适pH为7.0-8.0,最适温度为300°C;通气量越大越有利于p-TSA的降解。接种量对菌株Y-2对p-TSA的降解也有影响,当接种量在0.1%-2%的范围内时,加大接种量可以明显提高降解速率,接种量达到4%后,再增大接种量p-TSA降解速率基本不变。随着p-TSA初始浓度的增加,菌株Y-2的延滞期越来越长,但菌株能够在40h之内完全降解500mg/L的p-TSA,降解效率较高。添加200mg/L的葡萄糖作为额外碳源会促进p-TSA的降解,大大缩短降解时间。通过液质联用检测p-TSA降解过程中的代谢产物,发现主要的代谢产物有对羧基苯磺酸、对羟基苯磺酸、对苯二酚、丁烯二酸和乙二酸。根据检测结果推测可能的降解途径为:首先是甲基侧链氧化成羧基,紧接着羧基进一步脱碳生成羟基,生成对羟基苯磺酸,然后磺酸基脱落变成羟基,生成对苯二酚,然后对苯二酚开环,变成丁烯二酸和乙二酸,最后基本将其完全矿化。用劳麦方程对菌株Y-2降解p-TSA的降解动力学进行拟合,得出其动力学参数分别为 Vmax =46.95 mg/L/h,Ks=59.09 mg/L,当底物 p-TSA 浓度远远大于 46.95mg/L时,菌株Y-2对p-TSA的降解符合零级动力学模型,即p-TSA以最大速率降解,而与底物浓度无关。当底物p-TSA浓度远远小于46.95mg/L时,此时对甲苯磺酸降解速率与底物浓度呈一级反应关系,即底物浓度越高,降解速率越快。而在中间浓度时,菌株Y-2对p-TSA的降解处于混合级反应区。
[Abstract]:P-toluenesulfonic acid (p-TSA) is an important chemical raw material widely used in industry. Wastewater containing p-TSA is discharged into the environment in large quantities, which will pose a serious threat to human health and ecological environment. In this paper, a strain named Y-2 was selected from activated sludge of waste water treatment pond of Fengshan Pharmaceutical Factory in Jiangsu Province, which can grow with p-TSA as the sole carbon source by enrichment and separation. The strain could completely degrade the p-TSA of 200mg/L within 16 hours. The strain Y-2 was identified as a gram-negative strain. According to its physiological and biochemical characteristics and the homology of 16s rRNA gene sequence, strain Y-2 was identified as Pseudomonas Scheridoides. The strain Y-2 grew well in LB medium for 0-5h, and the strain began to decline after entering logarithmic growth stage (16h-25h) for 25 h. The optimum growth temperature and pH of strain Y-2 were 30 掳C and 7.0-8.0, respectively. Strain Y-2 was a strict aerobic bacterium, and the more aeration, the better the growth of strain Y-2, and the better the concentration of NaCl was, the better the growth of strain Y-2 was when the concentration of NaCl was 5-15g/L. The optimal concentration of NaCl for the growth of the strain was 10 g / L. The degradation bacteria Y-2 can use carbon sources such as glucose, fructose and maltose, but not sucrose, mannitol, xylose, nitrogen sources such as peptone, ammonium sulfate and ammonium chloride, but not urea. Strain Y-2 could completely degrade p-TSA with 200mg/L concentration within 16 hours. The optimum pH and temperature for p-TSA degradation were 7.0-8.0 and 300 掳C, respectively. The higher the aeration rate was, the more favorable the degradation of p-TSA was. The amount of inoculation also affected the degradation of p-TSA of strain Y-2. When the inoculation amount was in the range of 0.1-2%, the degradation rate of p-TSA could be increased obviously when the inoculation amount reached 4%, and the degradation rate of p-TSA was almost unchanged when the inoculation amount reached 4%. With the increase of initial concentration of p-TSA, the delay period of strain Y-2 was longer and longer, but the strain could completely degrade p-TSA of 500mg/L within 40 h, and the degradation efficiency was higher. The addition of 200mg/L as an additional carbon source could promote the degradation of p-TSA and shorten the degradation time. The main metabolites were p-carboxybenzenesulfonic acid, p-hydroxy benzenesulfonic acid, hydroquinone, butylenedioic acid and glycolic acid. According to the detection results, the possible degradation pathway is as follows: first, methyl side chain is oxidized to carboxyl group, then carboxyl group further decarbonizes to form p-hydroxy benzenesulfonic acid, then sulfonic group shedding to hydroxyl group to form hydroquinone. Then hydroquinone is ring-opening and becomes succinic acid and glycolic acid, and finally it is completely mineralized. The degradation kinetics of strain Y-2 degrading p-TSA was fitted by Laumai equation, and the kinetic parameters were obtained as follows: Vmax = 46.95 mg / L / L / L = 59.09 mg / L, respectively. When the p-TSA concentration of the substrate was much higher than that of 46.95mg/L, the degradation of p-TSA by strain Y-2 was in accordance with the zero-order kinetic model. That is, p-TSA degrades at maximum rate, independent of substrate concentration. When the concentration of substrate p-TSA is much lower than that of 46.95mg/L, the degradation rate of p-toluenesulfonic acid is first order reaction with the concentration of substrate, that is, the higher the substrate concentration, the faster the degradation rate of p-toluenesulfonic acid. At the intermediate concentration, the degradation of p-TSA by strain Y-2 was in the mixed reaction zone.
【学位授予单位】:南京农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X172
【参考文献】
相关期刊论文 前10条
1 曹华明;;极端微生物的研究及应用[J];天津农业科学;2013年10期
2 鲁亢;杨尚源;梁志伟;王云龙;李鑫;余华东;吴伟祥;;有机物生物降解性评价方法综述[J];应用生态学报;2013年02期
3 崔静岚;陈晨;秦智慧;俞春娜;沈慧;沈超峰;陈英旭;;嗜热菌对有机污染物的降解及其应用研究进展[J];应用生态学报;2012年11期
4 杜洪凤;游钒;沈月华;汪良枢;;高效液相色谱法测定工作场所空气中对甲苯磺酸[J];预防医学情报杂志;2012年09期
5 曹侃;刘东飞;刘亚凯;翟志才;;3种芳香磺酸在超高交联吸附树脂上的吸附行为[J];水处理技术;2012年04期
6 张凌;陶莹;常志显;李德亮;;臭氧法降解水中对甲基苯磺酸的动力学研究[J];环境科学学报;2011年10期
7 张明霞;焦光联;索超;;温度对IMO-SBR中微生物特性的影响[J];工业用水与废水;2011年04期
8 李青云;徐小芳;刘幽燕;周茂钟;钟善锦;;氯氰菊酯高效降解菌GF31的生长特性及其对污染土壤的修复能力[J];环境工程学报;2011年06期
9 刘国生;郝晓洁;段佩玲;侯瑛;秦文艳;;苯酚降解菌UW7的鉴定及对苯酚的降解作用[J];应用与环境生物学报;2011年01期
10 刘勇;;苯磺酸稀溶液的络合萃取研究[J];咸阳师范学院学报;2010年06期
相关硕士学位论文 前5条
1 张奎;芳磺酸化合物络合萃取研究[D];浙江大学;2014年
2 王菲;施氏假单胞菌N2对含氧多环芳烃的生物降解特性研究[D];西安建筑科技大学;2013年
3 赵静;施氏假单胞菌N2降解酚类污染物的特性及机理研究[D];西安建筑科技大学;2013年
4 张梦思;联苯、吡啶降解菌的筛选及降解研究[D];武汉科技大学;2011年
5 兰亚红;施氏假单胞杆菌的毒死蜱降解酶的基本特性及其制剂的研究[D];中国农业科学院;2008年
,本文编号:1778800
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1778800.html