微生物制剂对养殖水体的净化效果初步研究
本文选题:微生物制剂 + 硝化细菌 ; 参考:《青岛理工大学》2016年硕士论文
【摘要】:进入二十一世纪以来,我国内陆水产养殖业迅猛发展,高密度集约化养殖模式带来了较大的养殖产出,同时也由于养殖水体排泄物和残饵的积累以及生物残骸的沉积,导致氨氮、亚硝酸盐含量升高,不仅使养殖产量减少,而且可能造成养殖水体微生态平衡破坏。生物法具有高效、环保、低成本、无二次污染等特点,已被广泛使用。微生物制剂能够将养殖水体有毒的氨氮、亚硝酸盐转化为无害的硝酸盐,从而起到净化水质的作用。因此,探寻不同菌种、不同剂量的微生物制剂以及能够使其吸附迅速生长繁殖的滤料对水产养殖业的发展具有重要的意义。本研究建立一种净化养殖水体装置,分别投加硝化细菌、芽孢杆菌以及两者复合菌剂,并在此装置的基础上添加底沙和硝化毛球,探讨不同处理组对养殖水体中氨氮、亚硝酸盐的降解效果和青虾生长状况的影响。通过研究得出以下结论:(1)在温度25℃、pH7.5、溶解氧6mg/L养殖环境下,向青虾养殖系统中分别添加硝化细菌制剂、芽孢杆菌制剂及硝化细菌和芽孢杆菌复合菌剂。经过30天养殖,结果显示,对氨氮去除效果:硝化细菌+芽孢杆菌组硝化细菌组芽孢杆菌组空白组;对亚硝酸盐去除效果:硝化细菌+芽孢杆菌组芽孢杆菌组硝化细菌组空白组;青虾平均体重硝化细菌+芽孢杆菌组增长最多,硝化细菌组稍大于芽孢杆菌组,空白组最少。(2)在温度25℃、pH7.5、溶解氧6mg/L养殖环境下,向青虾养殖系统中分别添加一倍硝化细菌制剂和两倍硝化细菌制剂。经过30天养殖,结果显示,对氨氮去除效果:二倍硝化细菌组硝化细菌组空白组;对亚硝酸盐去除效果:二倍硝化细菌组硝化细菌组空白组,但二倍硝化细菌组去除效果跟硝化细菌组相比较不成倍数关系;青虾平均体重二倍硝化细菌组增长最多,硝化细菌组次之,空白组最少。(3)在温度25℃、pH7.5、溶解氧6mg/L养殖环境下,分别设置硝化细菌+底沙组、硝化细菌组、底沙组和空白组。经过30天养殖,结果显示,对氨氮去除效果:硝化细菌+底沙组硝化细菌组底沙组空白组;对亚硝酸盐去除效果:硝化细菌+底沙组硝化细菌组底沙组空白组;青虾平均体重硝化细菌+底沙组增长最多,硝化细菌组多于底沙组,空白组最少。(4)在温度25℃、pH7.5、溶解氧6mg/L养殖环境下,分别设置硝化细菌+硝化毛球组、硝化细菌组和空白组。经过30天养殖,结果显示,对氨氮去除效果:硝化细菌+硝化毛球组硝化细菌组空白组;对亚硝酸盐去除效果:硝化细菌+硝化毛球组硝化细菌组空白组;青虾平均体重硝化细菌+硝化毛球组增长最多,硝化细菌组次之,空白组最少。(5)在属水平上,硝化细菌组各菌种所占比例比较均匀,其中主要优势菌群为Phaeodactylibacter和Donghicola,所占比例分别为13.69%和13.23%;其次为黄杆菌属(Tenacibaculum)和浮霉状菌属(Planctomyces),分别占9.80%和7.10%。硝化细菌+芽孢杆菌组主要优势菌群为Phaeodactylibacter,所占比例超过70%;另外噬冷弯曲菌属(Psychroflexus)和Maritimibacter所占比例分别为2.89%和2.09%。两者都存在优势菌种Phaeodactylibacter·xiamenensis和Phaeodactylibacter·luteus。
[Abstract]:Since twenty-first Century, the inland aquaculture industry has developed rapidly in China, and the high density intensive farming model has brought large production output. At the same time, the accumulation of excrement and residual bait and the deposition of biological debris have resulted in the increase of ammonia nitrogen and nitrite, which not only reduces the production of aquaculture, but also causes the cultivation of aquaculture. The biological method has the characteristics of high efficiency, environmental protection, low cost, no two pollution and so on. It has been widely used. The microbial agent can convert the toxic ammonia nitrogen and nitrite into harmless nitrate in the aquaculture water, so as to purify the water quality. And the filter material which can make it adsorbed and propagate rapidly is of great significance to the development of aquaculture. In this study, we set up a purifying water body, adding nitrifying bacteria, Bacillus spore and both compound bacteria, and adding bottom sand and nitrifying ball on the basis of this device, and discussed the different treatment groups in the aquaculture water body. The effects of ammonia nitrogen and nitrite degradation and the growth status of shrimp were studied. The following conclusions were obtained: (1) nitrifying bacteria preparation, bacillus preparation, nitrifying bacteria and Bacillus spore compound bacteria were added to the aquaculture system at 25, pH7.5, and dissolved oxygen in the culture environment. After 30 days, the results showed that Ammonia nitrogen removal efficiency: nitrifying bacteria + bacillus group nitrifying bacteria group blank group, nitrite removal effect: nitrifying bacteria + Bacillus spore group nitrifying bacteria group group, the average weight of nitrifying bacteria + bacillus group increased most, nitrifying bacteria group was slightly larger than the bacillus group, the blank group was the most. Less. (2) under the environment of temperature 25, pH7.5 and dissolved oxygen 6mg/L, the nitrifying bacteria preparation and two times nitrifying bacteria preparation were added to the shrimp culture system respectively. After 30 days culture, the results showed that the ammonia nitrogen removal effect was two times the nitrifying bacteria group empty white group of nitrifying bacteria group, and the nitrite removal effect was two times nitrifying nitrite. The removal efficiency of the two times nitrifying bacteria group was not related to the nitrifying bacteria group, the average weight of the two times the nitrifying bacteria group increased most, the nitrifying bacteria group was the group, and the blank group was the least. (3) the nitrifying bacteria + bottom sand group and the nitrifying bacteria group were set up under the temperature 25, pH7.5 and dissolved oxygen 6mg/L culture environment. After 30 days of aquaculture, the results showed that the removal efficiency of ammonia nitrogen: nitrifying bacteria + bottom sand group nitrifying bacteria group bottom sand group blank group, nitrite removal effect: nitrifying bacteria + bottom sand group nitrifying bacteria group bottom sand group blank group, the average weight of nitrifying bacteria + bottom sand group of the green shrimp increased most, nitrifying bacteria group more than the bottom sand group. The blank group was the least. (4) under the temperature 25, pH7.5 and dissolved oxygen 6mg/L, the nitrifying bacteria + nitrifying ball group, the nitrifying bacteria group and the blank group were set respectively. After 30 days culture, the results showed that the ammonia nitrogen removal efficiency was: nitrifying bacteria + nitrifying ball group nitrifying bacteria group blank group; nitrite removal effect: nitrifying bacteria + nitrifying ball The average weight of nitrifying bacteria + nitrifying ball in the group of nitrifying bacteria increased most and the nitrifying bacteria group was the least. (5) at the level of the genus, the proportion of the bacteria in the nitrifying bacteria group was more uniform, the main dominant bacteria group was Phaeodactylibacter and Donghicola, the proportion was 13.69% and 13.23% respectively. Secondly, the proportion of the bacteria was 13.23%. The genus (Tenacibaculum) and buoy genus (Planctomyces) accounted for 9.80% and 7.10%. nitrobacteria + bacillus and Bacillus spore group Phaeodactylibacter, which accounted for more than 70%, and the proportion of phagocytosis (Psychroflexus) and Maritimibacter was 2.89% and 2.09%., respectively, both of which had the dominant strain Phaeodac. Tylibacter. Xiamenensis and Phaeodactylibacter. Luteus.
【学位授予单位】:青岛理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:X52
【参考文献】
相关期刊论文 前10条
1 秦健;周东;王亚宜;刘山虎;潘绵立;黎力;宋成康;;综合多种检测方法分析盐度对硝化菌活性的影响[J];中国给水排水;2014年05期
2 李永;杨其彬;苏天凤;周发林;杨丽诗;黄建华;;氨氮对斑节对虾的毒性及免疫指标的影响[J];上海海洋大学学报;2012年03期
3 刘道玉;吴伟;;水产养殖水体污染及微生物修复的研究[J];现代农业科技;2011年17期
4 李久安;周后珍;刘庆华;谭周亮;李旭东;;废水生物强化处理技术研究进展[J];应用与环境生物学报;2011年02期
5 李芳芳;齐树亭;石玉新;吕玉珊;高长虹;;新型固定化硝化细菌和好氧反硝化细菌处理氨氮废水[J];生态科学;2010年05期
6 梁拥军;孙向军;杨璞;刘金兰;杨广;;硝化细菌在澳洲银鲈工厂化养殖中的应用初探[J];安徽农业科学;2009年01期
7 李长玲;黄翔鹄;李瑞伟;王辉;区启鸿;;硝化细菌改善鱼苗培育环境增强罗非鱼抗逆性研究[J];渔业现代化;2008年05期
8 王建芳;赵庆良;林佶侃;金文标;;生物强化技术及其在废水生物处理中的应用[J];环境工程学报;2007年09期
9 曲克明;徐勇;马绍赛;李健;;不同溶解氧条件下亚硝酸盐和非离子氨对大菱鲆的急性毒性效应[J];海洋水产研究;2007年04期
10 吴彦彬;李亚丹;李小俊;边艳青;;拟杆菌的研究及应用[J];生物技术通报;2007年01期
,本文编号:1784117
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1784117.html